【题目链接】
【思路要点】
- 规定 1,2,...,M 1 , 2 , . . . , M 号节点为叶子结点,最后将答案乘上 (NM) ( N M ) 。
- 考虑树的 Prufer P r u f e r 序列,叶子结点的编号不会出现在序列中。
- 用容斥原理计算答案即可,
Ans=(NM)∗∑Ni=M(−1)i−M∗(N−Mi−M)∗(N−i)N−2 A n s = ( N M ) ∗ ∑ i = M N ( − 1 ) i − M ∗ ( N − M i − M ) ∗ ( N − i ) N − 2 。- 时间复杂度 O(NLogN) O ( N L o g N ) 。
【代码】
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1000005;
const int P = 1e9 + 7;
template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
template <typename T> void chkmin(T &x, T y) {x = min(x, y); }
template <typename T> void read(T &x) {
x = 0; int f = 1;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
x *= f;
}
template <typename T> void write(T x) {
if (x < 0) x = -x, putchar('-');
if (x > 9) write(x / 10);
putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {
write(x);
puts("");
}
int fac[MAXN], inv[MAXN];
int power(int x, int y) {
if (y == 0) return 1;
int tmp = power(x, y / 2);
if (y % 2 == 0) return 1ll * tmp * tmp % P;
else return 1ll * tmp * tmp % P * x % P;
}
int getc(int x, int y) {
return 1ll * fac[x] * inv[y] % P * inv[x - y] % P;
}
int main() {
int n, m; read(n), read(m);
fac[0] = 1;
for (int i = 1; i <= n; i++)
fac[i] = 1ll * fac[i - 1] * i % P;
inv[n] = power(fac[n], P - 2);
for (int i = n - 1; i >= 0; i--)
inv[i] = inv[i + 1] * (i + 1ll) % P;
int ans = 0;
for (int i = m; i <= n; i++) {
int tmp = 1;
if ((i - m) & 1) tmp = P - 1;
ans = (ans + 1ll * tmp * getc(n - m, i - m) % P * power(n - i, n - 2)) % P;
}
writeln(1ll * ans * getc(n, m) % P);
return 0;
}