【51Nod1802】左偏树计数

本文探讨了51Nod1802题目的解法,主要讲解了如何计算不同大小和根节点距离的左偏树的数量。通过枚举左右子树的大小和根节点距离,原算法的时间复杂度为O(N^2 Log^2 N),但可以通过前缀和优化降低到O(N^2 Log N)。

【题目链接】

【思路要点】

  • dpi,j d p i , j 表示大小为 i i ,根节点距离为j的左偏树的个数。
  • 转移时枚举左右子树的大小,以及左子树根节点的距离即可。
  • 时间复杂度 O(N2Log2N) O ( N 2 L o g 2 N ) ,可以用前缀和优化至 O(N2LogN) O ( N 2 L o g N )

【代码】


#include<bits/stdc++.h>

using namespace std;
const int MAXN = 1005;
const int MAXLOG = 15;
template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
template <typename T> void chkmin(T &x, T y) {x = min(x, y); } 
template <typename T> void read(T &x) {
  x = 0; int f = 1;
  char c = getchar();
  for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
  for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
  x *= f;
}
template <typename T> void write(T x) {
  if (x < 0) x = -x, putchar('-');
  if (x > 9) write(x / 10);
  putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {
  write(x);
  puts("");
}
int n, P, dp[MAXN][MAXLOG];
int main() {
  read(n), read(P);
  dp[0][0] = dp[1][1] = 1;
  for (int i = 2; i <= n; i++)
  for (int j = 1; (1 << j) - 1 <= i; j++) {
      int tmp = 0;
      for (int l = 0, r = i - 1; r >= 0; l++, r--)
      for (int k = j - 1; (1 << k) - 1 <= l; k++)
          tmp = (tmp + 1ll * dp[l][k] * dp[r][j - 1]) % P;
      dp[i][j] = tmp;
  }
  int ans = 0;
  for (int i = 1; (1 << i) - 1 <= n; i++)
      ans = (ans + dp[n][i]) % P;
  writeln(ans);
  return 0;
}
题目 51nod 3478 涉及一个矩阵问题,要求通过最少的操作次数,使得矩阵中至少有 `RowCount` 行和 `ColumnCount` 列是回文的。解决这个问题的关键在于如何高效地枚举所有可能的行和列组合,并计算每种组合所需的操作次数。 ### 解法思路 1. **预处理每一行和每一列变为回文所需的最少操作次数**: - 对于每一行,计算将其变为回文所需的最少操作次数。这可以通过比较每对对称位置的值是否相同来完成。 - 对于每一列,计算将其变为回文所需的最少操作次数,方法同上。 2. **枚举所有可能的行和列组合**: - 由于 `N` 和 `M` 的最大值为 8,因此可以枚举所有可能的行组合和列组合。 - 对于每一种组合,计算其所需的最少操作次数,并取最小值。 3. **计算操作次数**: - 对于每一种组合,需要计算哪些行和列需要修改,并且注意行和列的交叉点可能会重复计算,因此需要去重。 ### 代码实现 以下是一个可能的实现方式,使用了枚举和位运算来处理组合问题: ```python def min_operations_to_palindrome(matrix, row_count, col_count): import itertools N = len(matrix) M = len(matrix[0]) # Precompute the cost to make each row a palindrome row_cost = [] for i in range(N): cost = 0 for j in range(M // 2): if matrix[i][j] != matrix[i][M - 1 - j]: cost += 1 row_cost.append(cost) # Precompute the cost to make each column a palindrome col_cost = [] for j in range(M): cost = 0 for i in range(N // 2): if matrix[i][j] != matrix[N - 1 - i][j]: cost += 1 col_cost.append(cost) min_total_cost = float('inf') # Enumerate all combinations of rows and columns rows = list(range(N)) cols = list(range(M)) from itertools import combinations for row_comb in combinations(rows, row_count): for col_comb in combinations(cols, col_count): # Calculate the cost for this combination cost = 0 # Add row costs for r in row_comb: cost += row_cost[r] # Add column costs for c in col_comb: cost += col_cost[c] # Subtract the overlapping cells for r in row_comb: for c in col_comb: # Check if this cell is part of the palindrome calculation if r < N // 2 and c < M // 2: if matrix[r][c] != matrix[r][M - 1 - c] and matrix[N - 1 - r][c] != matrix[N - 1 - r][M - 1 - c]: cost -= 1 min_total_cost = min(min_total_cost, cost) return min_total_cost # Example usage matrix = [ [0, 1, 0], [1, 0, 1], [0, 1, 0] ] row_count = 2 col_count = 2 result = min_operations_to_palindrome(matrix, row_count, col_count) print(result) ``` ### 代码说明 - **预处理成本**:首先计算每一行和每一列变为回文所需的最少操作次数。 - **枚举组合**:使用 `itertools.combinations` 枚举所有可能的行和列组合。 - **计算成本**:对于每一种组合,计算其成本,并考虑行和列交叉点的重复计算问题。 ### 复杂度分析 - **时间复杂度**:由于 `N` 和 `M` 的最大值为 8,因此枚举所有组合的时间复杂度为 $ O(N^{RowCount} \times M^{ColCount}) $,这在实际中是可接受的。 - **空间复杂度**:主要是存储预处理的成本,空间复杂度为 $ O(N + M) $。 ### 相关问题 1. 如何优化矩阵中行和列的枚举组合以减少计算时间? 2. 在计算行和列的交叉点时,如何更高效地处理重复计算的问题? 3. 如果矩阵的大小增加到更大的范围,如何调整算法以保持效率? 4. 如何处理矩阵中行和列的回文条件不同时的情况? 5. 如何扩展算法以支持更多的操作类型,例如翻转某个区域的值?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值