【校内训练2019-04-03】星际穿越

本文介绍了一种使用多项式求逆和快速傅里叶变换优化的算法来解决极长上升序列计数的问题,该算法的时间复杂度为O(NLogN)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【思路要点】

  • 考虑 r=1r=1r=1 ,问题要求将排列分成若干段长度为 kkk 的极长上升序列,这里假设 NNNkkk 的倍数, NNN 不为 kkk 的倍数时只需要多一些细节处理。
  • 若不考虑极长的限制,这里的排列数显然为 N!k!Nk\frac{N!}{k!^{\frac{N}{k}}}k!kNN! ,那么,我们可以用容斥原理计算考虑极长限制的方案数,即记 dpidp_idpi 表示第 1∼i1\sim i1i 段的分割方式数除去 N!N!N! 后的数值,则有
    dpi=−∑j=0i−1dpj((i−j)×k)!dp_{i}=-\sum_{j=0}^{i-1}\frac{dp_j}{((i-j)\times k)!}dpi=j=0i1((ij)×k)!dpj
  • 可以用多项式求逆优化上式,时间复杂度 O(NLogN)O(NLogN)O(NLogN)
  • 由上面的算法不难得到 r>1r>1r>1 的转移
    dpi=−∑j=0i−1dpj((i−j)×k)!rdp_{i}=-\sum_{j=0}^{i-1}\frac{dp_j}{((i-j)\times k)!^r}dpi=j=0i1((ij)×k)!rdpj
  • 同样可以用多项式求逆优化上式,时间复杂度 O(NLogN)O(NLogN)O(NLogN)

【代码】

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 2097152;
const int P = 998244353;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
template <typename T> void chkmin(T &x, T y) {x = min(x, y); } 
template <typename T> void read(T &x) {
	x = 0; int f = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
	for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
	x *= f;
}
template <typename T> void write(T x) {
	if (x < 0) x = -x, putchar('-');
	if (x > 9) write(x / 10);
	putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {
	write(x);
	puts("");
}
namespace Poly {
	const int MAXN = 2097152;
	const int P = 998244353;
	const int LOG = 25;
	const int G = 3;
	int power(int x, int y) {
		if (y == 0) return 1;
		int tmp = power(x, y / 2);
		if (y % 2 == 0) return 1ll * tmp * tmp % P;
		else return 1ll * tmp * tmp % P * x % P;
	}
	int invn[MAXN], tmpa[MAXN], tmpb[MAXN];
	int N, Log, home[MAXN]; bool initialized;
	int forward[MAXN], bckward[MAXN], inv[LOG];
	void init() {
		initialized = true;
		forward[0] = bckward[0] = inv[0] = invn[1] = 1;
		for (int len = 2, lg = 1; len <= MAXN; len <<= 1, lg++)
			inv[lg] = power(len, P - 2);
		for (int i = 2; i < MAXN; i++)
			invn[i] = (P - 1ll * (P / i) * invn[P % i] % P) % P;
		int delta = power(G, (P - 1) / MAXN);
		for (int i = 1; i < MAXN; i++)
			forward[i] = bckward[MAXN - i] = 1ll * forward[i - 1] * delta % P;
	}
	void NTTinit() {
		for (int i = 0; i < N; i++) {
			int ans = 0, tmp = i;
			for (int j = 1; j <= Log; j++) {
				ans <<= 1;
				ans += tmp & 1;
				tmp >>= 1;
			}
			home[i] = ans;
		}
	}
	void NTT(int *a, int mode) {
		assert(initialized);
		for (int i = 0; i < N; i++)
			if (home[i] < i) swap(a[i], a[home[i]]);
		int *g;
		if (mode == 1) g = forward;
		else g = bckward;
		for (int len = 2, lg = 1; len <= N; len <<= 1, lg++) {
			for (int i = 0; i < N; i += len) {
				for (int j = i, k = i + len / 2; k < i + len; j++, k++) {
					int tmp = a[j];
					int tnp = 1ll * a[k] * g[MAXN / len * (j - i)] % P;
					a[j] = (tmp + tnp > P) ? (tmp + tnp - P) : (tmp + tnp);
					a[k] = (tmp - tnp < 0) ? (tmp - tnp + P) : (tmp - tnp);
				}
			}
		}
		if (mode == -1) {
			for (int i = 0; i < N; i++)
				a[i] = 1ll * a[i] * inv[Log] % P;
		}
	}
	void times(vector <int> &a, vector <int> &b, vector <int> &c) {
		assert(a.size() >= 1), assert(b.size() >= 1);
		int goal = a.size() + b.size() - 1;
		N = 1, Log = 0;
		while (N < goal) {
			N <<= 1;
			Log++;
		}
		for (int i = 0; i < a.size(); i++)
			tmpa[i] = a[i];
		for (int i = a.size(); i < N; i++)
			tmpa[i] = 0;
		for (int i = 0; i < b.size(); i++)
			tmpb[i] = b[i];
		for (int i = b.size(); i < N; i++)
			tmpb[i] = 0;
		NTTinit();
		NTT(tmpa, 1);
		NTT(tmpb, 1);
		for (int i = 0; i < N; i++)
			tmpa[i] = 1ll * tmpa[i] * tmpb[i] % P;
		NTT(tmpa, -1);
		c.resize(goal);
		for (int i = 0; i < goal; i++)
			c[i] = tmpa[i];
	}
	void timesabb(vector <int> &a, vector <int> &b, vector <int> &c) {
		assert(a.size() >= 1), assert(b.size() >= 1);
		int goal = a.size() + b.size() * 2 - 2;
		N = 1, Log = 0;
		while (N < goal) {
			N <<= 1;
			Log++;
		}
		for (int i = 0; i < a.size(); i++)
			tmpa[i] = a[i];
		for (int i = a.size(); i < N; i++)
			tmpa[i] = 0;
		for (int i = 0; i < b.size(); i++)
			tmpb[i] = b[i];
		for (int i = b.size(); i < N; i++)
			tmpb[i] = 0;
		NTTinit();
		NTT(tmpa, 1);
		NTT(tmpb, 1);
		for (int i = 0; i < N; i++)
			tmpa[i] = 1ll * tmpa[i] * tmpb[i] % P * tmpb[i] % P;
		NTT(tmpa, -1);
		c.resize(goal);
		for (int i = 0; i < goal; i++)
			c[i] = tmpa[i];
	}
	void getinv(vector <int> &a, vector <int> &b) {
		assert(a.size() >= 1), assert(a[0] != 0);
		b.clear(), b.push_back(power(a[0], P - 2));
		while (b.size() < a.size()) {
			vector <int> c, ta = a;
			ta.resize(b.size() * 2);
			timesabb(ta, b, c);
			b.resize(b.size() * 2);
			for (unsigned i = 0; i < b.size(); i++)
				b[i] = (2ll * b[i] - c[i] + P) % P;
		}
		b.resize(a.size());
	}
	void getder(vector <int> &a, vector <int> &b) {
		assert(a.size() >= 1);
		if (a.size() == 1) {
			b.clear();
			b.resize(1);
		} else {
			b.resize(a.size() - 1);
			for (unsigned i = 0; i < b.size(); i++)
				b[i] = (i + 1ll) * a[i + 1] % P;
		}
	}
	void getint(vector <int> &a, vector <int> &b) {
		b.resize(a.size() + 1), b[0] = 0;
		for (unsigned i = 0; i < a.size(); i++)
			b[i + 1] = 1ll * invn[i + 1] * a[i] % P;
	}
	void getlog(vector <int> &a, vector <int> &b) {
		assert(a.size() >= 1), assert(a[0] == 1);
		vector <int> da, inva, db;
		getder(a, da), getinv(a, inva);
		times(da, inva, db), getint(db, b);
		b.resize(a.size());
	}
	void getexp(vector <int> &a, vector <int> &b) {
		assert(a.size() >= 1), assert(a[0] == 0);
		b.clear(), b.push_back(1);
		while (b.size() < a.size()) {
			vector <int> lnb, res;
			b.resize(b.size() * 2), getlog(b, lnb);
			for (unsigned i = 0; i < lnb.size(); i++)
				if (i == 0) lnb[i] = (P + 1 + a[i] - lnb[i]) % P;
				else if (i < a.size()) lnb[i] = (P + a[i] - lnb[i]) % P;
				else lnb[i] = (P - lnb[i]) % P;
			times(lnb, b, res);
			res.resize(b.size());
			swap(res, b);
		}
		b.resize(a.size());
	}
}
int n, m, r, k, s[MAXN], dp[MAXN];
int fac[MAXN], inv[MAXN], coef[MAXN];
int power(int x, int y) {
	if (y == 0) return 1;
	int tmp = power(x, y / 2);
	if (y % 2 == 0) return 1ll * tmp * tmp % P;
	else return 1ll * tmp * tmp % P * x % P;
}
int getc(int x, int y) {
	if (y > x) return 0;
	else return 1ll * fac[x] * inv[y] % P * inv[x - y] % P;
}
void init(int n) {
	fac[0] = 1;
	for (int i = 1; i <= n; i++)
		fac[i] = 1ll * fac[i - 1] * i % P;
	inv[n] = power(fac[n], P - 2);
	for (int i = n - 1; i >= 0; i--)
		inv[i] = inv[i + 1] * (i + 1ll) % P;
}
void update(int &x, int y) {
	x += y;
	if (x >= P) x -= P;
}
int main() {
	freopen("interstellar.in", "r", stdin);
	freopen("interstellar.out", "w", stdout);
	read(m), read(r), read(k), init(m);
	n = (m - 1) / k + 1;
	vector <int> invr, res;
	for (int i = 0; i <= n - 1; i++)
		invr.push_back(power(inv[i * k], r));
	Poly :: init(), Poly :: getinv(invr, res);
	int ans = 0;
	for (int i = 0; i <= n - 1; i++)
		update(ans, P - 1ll * res[i] * power(inv[m - i * k], r) % P);
	ans = 1ll * ans * power(fac[m], r) % P;
	if (n & 1) writeln((P - ans) % P);
	else writeln(ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值