【CodeForces】CodeForces Round #406 (Div. 1) 题解

本文深入探讨了博弈论在图算法中的应用,包括Berzerk、Legacy等经典问题的解决思路,涵盖游戏图构建、单源最短路径计算、贪心算法优化及树状数组维护等关键技巧。

【比赛链接】

【题解链接】

**【A】**Berzerk

【思路要点】

  • 博弈搜索,将状态按先后手拆点,建出游戏图。
  • 若一个点存在出边指向必败态,则该点为必胜态。
  • 若一个点所有出边指向必胜态,则该点为必败态。
  • 不满足上述两点的点为平局态。
  • 用一个类似拓扑排序的过程实现即可。
  • 时间复杂度 O ( N 2 ) O(N^2) O(N2)

【代码】

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 2e4 + 5;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
template <typename T> void chkmin(T &x, T y) {x = min(x, y); } 
template <typename T> void read(T &x) {
	x = 0; int f = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
	for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
	x *= f;
}
template <typename T> void write(T x) {
	if (x < 0) x = -x, putchar('-');
	if (x > 9) write(x / 10);
	putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {
	write(x);
	puts("");
}
int n, tot, point[MAXN][2], d[MAXN];
bool vis[MAXN], win[MAXN];
vector <int> s, t, a[MAXN];
int main() {
	read(n);
	int k; read(k);
	while (k--) {
		int x; read(x);
		s.push_back(x);
	}
	read(k);
	while (k--) {
		int x; read(x);
		t.push_back(x);
	}
	for (int i = 1; i <= n; i++) {
		point[i][0] = ++tot;
		d[tot] = s.size();
		point[i][1] = ++tot;
		d[tot] = t.size();
	}
	int l = 0, r = 1;
	static int q[MAXN];
	q[0] = point[1][0], q[1] = point[1][1];
	vis[q[0]] = vis[q[1]] = true;
	win[q[0]] = win[q[1]] = false;
	while (l <= r) {
		int tmp = q[l++], type = tmp % 2;
		int pos = (tmp + 1) / 2;
		if (win[tmp]) {
			if (type) {
				for (unsigned i = 0; i < t.size(); i++) {
					int tnp = point[(pos - t[i] + n - 1) % n + 1][1];
					if (!vis[tnp] && --d[tnp] == 0) {
						vis[tnp] = true;
						win[tnp] = false;
						q[++r] = tnp;
					}
				}
			} else {
				for (unsigned i = 0; i < s.size(); i++) {
					int tnp = point[(pos - s[i] + n - 1) % n + 1][0];
 					if (!vis[tnp] && --d[tnp] == 0) {
						vis[tnp] = true;
						win[tnp] = false;
						q[++r] = tnp;
					}
				}
			}
		} else {
			if (type) {
				for (unsigned i = 0; i < t.size(); i++) {
					int tnp = point[(pos - t[i] + n - 1) % n + 1][1];
					if (!vis[tnp]) {
						vis[tnp] = true;
						win[tnp] = true;
						q[++r] = tnp;
					}
				}
			} else {
				for (unsigned i = 0; i < s.size(); i++) {
					int tnp = point[(pos - s[i] + n - 1) % n + 1][0];
					if (!vis[tnp]) {
						vis[tnp] = true;
						win[tnp] = true;
						q[++r] = tnp;
					}
				}
			}
		}
	}
	for (int i = 2; i <= n; i++)
		if (vis[point[i][0]]) {
			if (win[point[i][0]]) printf("Win ");
			else printf("Lose ");
		} else printf("Loop ");
	printf("\n");
	for (int i = 2; i <= n; i++)
		if (vis[point[i][1]]) {
			if (win[point[i][1]]) printf("Win ");
			else printf("Lose ");
		} else printf("Loop ");
	printf("\n");
	return 0;
}

**【B】**Legacy

【思路要点】

  • 线段树建图,跑单源最短路。
  • 时间复杂度 O ( N L o g N + Q L o g 2 N ) O(NLogN+QLog^2N) O(NLogN+QLog2N)

【代码】

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 2e5 + 5;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
template <typename T> void chkmin(T &x, T y) {x = min(x, y); } 
template <typename T> void read(T &x) {
	x = 0; int f = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
	for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
	x *= f;
}
template <typename T> void write(T x) {
	if (x < 0) x = -x, putchar('-');
	if (x > 9) write(x / 10);
	putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {
	write(x);
	puts("");
}
namespace ShortestPath {
	const ll INF = 1e18;
	const int MAXP = 1e6;
	struct edge {int dest, len; };
	int n; ll dist[MAXP];
	vector <edge> a[MAXP];
	set <pair <ll, int> > st;
	void addedge(int x, int y, int z) {
		a[x].push_back((edge) {y, z});
	}
	void init(int x) {
		n = x; st.clear();
		for (int i = 1; i <= n; i++) {
			dist[i] = INF;
			a[i].clear();
		}
	}
	void work(int s) {
		dist[s] = 0;
		st.insert(make_pair(0, s));
		while (!st.empty()) {
			pair <ll, int> tmp = *st.begin();
			st.erase(tmp);
			for (unsigned i = 0; i < a[tmp.second].size(); i++) {
				int dest = a[tmp.second][i].dest;
				ll newlen = tmp.first + a[tmp.second][i].len;
				if (newlen < dist[dest]) {
					st.erase(make_pair(dist[dest], dest));
					dist[dest] = newlen;
					st.insert(make_pair(dist[dest], dest));
				}
			}
		}
	}
}
int tot, n, q, s, totp, root;
int lc[MAXN], rc[MAXN], point[MAXN][2];
void build(int &root, int l, int r) {
	root = ++totp;
	point[root][0] = ++tot;
	point[root][1] = ++tot;
	if (l == r) return;
	int mid = (l + r) / 2;
	build(lc[root], l, mid);
	build(rc[root], mid + 1, r);
}
void query(int from, int root, int l, int r, int ql, int qr, int len, int type) {
	if (l == ql && r == qr) {
		if (type == 0) ShortestPath :: addedge(from, point[root][0], len);
		else ShortestPath :: addedge(point[root][1], from, len);
		return;
	}
	int mid = (l + r) / 2;
	if (mid >= ql) query(from, lc[root], l, mid, ql, min(mid, qr), len, type);
	if (mid + 1 <= qr) query(from, rc[root], mid + 1, r, max(mid + 1, ql), qr, len, type);
}
int main() {
	read(n), read(q), read(s), tot = n;
	build(root, 1, n);
	ShortestPath :: init(tot);
	for (int i = 1, j = 0; i <= totp; i++) {
		if (lc[i]) {
			ShortestPath :: addedge(point[i][0], point[lc[i]][0], 0);
			ShortestPath :: addedge(point[i][0], point[rc[i]][0], 0);
			ShortestPath :: addedge(point[lc[i]][1], point[i][1], 0);
			ShortestPath :: addedge(point[rc[i]][1], point[i][1], 0);
		} else {
			j++;
			ShortestPath :: addedge(point[i][0], j, 0);
			ShortestPath :: addedge(j, point[i][1], 0);
		}
	}
	for (int i = 1; i <= q; i++) {
		int opt; read(opt);
		if (opt == 1) {
			int x, y, z;
			read(x), read(y), read(z);
			ShortestPath :: addedge(x, y, z);
		}
		if (opt == 2) {
			int x, l, r, z;
			read(x), read(l), read(r), read(z);
			query(x, root, 1, n, l, r, z, 0);
		}
		if (opt == 3) {
			int x, l, r, z;
			read(x), read(l), read(r), read(z);
			query(x, root, 1, n, l, r, z, 1);
		}
	}
	ShortestPath :: work(s);
	for (int i = 1; i <= n; i++) {
		ll tmp = ShortestPath :: dist[i];
		if (tmp == 1e18) printf("-1 ");
		else write(tmp), putchar(' ');
	}
	return 0;
}

**【C】**Till I Collapse

【思路要点】

  • 显然所有答案的总和不超过 N + N 2 + N 3 + . . . = O ( N L o g N ) N+\frac{N}{2}+\frac{N}{3}+...=O(NLogN) N+2N+3N+...=O(NLogN)
  • 从左到右考虑所有左端点,用树状数组维护右端点对应的区间内不同数的个数,二分最远点实现贪心。
  • 时间复杂度 O ( N L o g 2 N ) O(NLog^2N) O(NLog2N)

【代码】

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 2e5 + 5;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
template <typename T> void chkmin(T &x, T y) {x = min(x, y); } 
template <typename T> void read(T &x) {
	x = 0; int f = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
	for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
	x *= f;
}
template <typename T> void write(T x) {
	if (x < 0) x = -x, putchar('-');
	if (x > 9) write(x / 10);
	putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {
	write(x);
	puts("");
}
struct BinaryIndexTree {
	int n, a[MAXN];
	void init(int x) {
		n = x;
		memset(a, 0, sizeof(a));
	}
	void modify(int x, int d) {
		for (int i = x; i <= n; i += i & -i)
			a[i] += d;
	}
	int query(int x) {
		int ans = 0;
		for (int i = 20; i >= 0; i--) {
			int tmp = 1 << i;
			if (ans + tmp <= n && a[ans + tmp] <= x) {
				x -= a[ans + tmp];
				ans += tmp;
			}
		}
		return ans;
	}
} BIT;
int n, val[MAXN], last[MAXN], ans[MAXN];
vector <int> a[MAXN], home[MAXN];
int main() {
	read(n);
	for (int i = 1; i <= n; i++) {
		read(val[i]);
		a[last[val[i]]].push_back(i);
		last[val[i]] = i;
	}
	for (int i = 1; i <= n; i++)
		home[1].push_back(i);
	BIT.init(n);
	for (int i = 1; i <= n; i++) {
		if (i != 1) BIT.modify(i - 1, -1);
		for (unsigned j = 0; j < a[i - 1].size(); j++)
			BIT.modify(a[i - 1][j], 1);
		for (unsigned j = 0; j < home[i].size(); j++) {
			int tmp = home[i][j];
			ans[tmp]++, home[BIT.query(tmp) + 1].push_back(tmp);
		}
	}
	for (int i = 1; i <= n; i++)
		write(ans[i]), putchar(' ');
	return 0;
}

**【D】**Rap God

【思路要点】

  • 标算是点分治。
  • 我们用树上倍增 + + + 哈希实现快速比较字符串。
  • 运用点分治,我们将问题转化到了询问 ( x , y ) (x,y) (x,y) 中的 x x x 在分治重心的情况。
  • x x x 所在分治子树的字符串通过哈希比较排序,询问时二分即可。
  • 时间复杂度 O ( N L o g 3 N + Q L o g 3 N ) O(NLog^3N+QLog^3N) O(NLog3N+QLog3N)
  • 但上面的做法比较难写,下面笔者的代码是暴力的精细实现,时间复杂度 O ( N 2 ) O(N^2) O(N2)

【代码】

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 2e5 + 5;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
template <typename T> void chkmin(T &x, T y) {x = min(x, y); } 
template <typename T> void read(T &x) {
	x = 0; int f = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
	for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
	x *= f;
}
template <typename T> void write(T x) {
	if (x < 0) x = -x, putchar('-');
	if (x > 9) write(x / 10);
	putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {
	write(x);
	puts("");
}
char from[MAXN];
int n, m, father[MAXN], ans[MAXN];
vector <pair <int, int> > q[MAXN];
vector <pair <int, char> > a[MAXN];
void dfs(int pos, int fa) {
	for (unsigned i = 0; i < a[pos].size(); i++)
		if (a[pos][i].first != fa) {
			father[a[pos][i].first] = pos;
			from[a[pos][i].first] = a[pos][i].second;
			dfs(a[pos][i].first, pos);
		}
}
int solve(int pos, int to) {
	static int vis[MAXN], depth[MAXN], tag = 0;
	static char val[MAXN]; static int cmp[MAXN]; tag++;
	int tmp = n, ans = -1;
	for (int now = to; now != pos; now = father[now], tmp--) {
		val[tmp] = from[now];
		depth[now] = tmp;
		vis[now] = tag;
		cmp[now] = 1;
		ans++;
	}
	vis[pos] = tag, cmp[pos] = 1, depth[pos] = tmp;
	for (int i = 1; i <= n; i++)
		if (vis[i] != tag) {
			int top = 0, now = i;
			static int st[MAXN];
			while (vis[now] != tag) st[top++] = now, now = father[now];
			for (int j = top - 1; j >= 0; j--) {
				int now = st[j];
				depth[now] = depth[father[now]] + 1;
				vis[now] = tag;
				if (cmp[father[now]] != 1) cmp[now] = cmp[father[now]];
				else if (val[depth[now]] > from[now]) cmp[now] = 0;
				else if (val[depth[now]] == from[now]) cmp[now] = 1;
				else cmp[now] = 2;
				ans += (cmp[now] == 0) || (cmp[now] == 1 && depth[now] < n);
			}
		}
	return ans;
}
void work(int pos, int fa) {
	for (unsigned i = 0; i < q[pos].size(); i++)
		ans[q[pos][i].second] = solve(pos, q[pos][i].first);
	for (unsigned i = 0; i < a[pos].size(); i++)
		if (a[pos][i].first != fa) {
			int dest = a[pos][i].first;
			father[pos] = dest;
			father[dest] = 0;
			from[pos] = a[pos][i].second;
			work(dest, pos);
			father[dest] = pos;
			father[pos] = 0;
			from[dest] = a[pos][i].second;
		}
}
int main() {
	read(n), read(m);
	for (int i = 1; i <= n - 1; i++) {
		int x, y; char c;
		scanf("%d%d %c", &x, &y, &c);
		a[x].push_back(make_pair(y, c));
		a[y].push_back(make_pair(x, c));
	}
	dfs(1, 0);
	for (int i = 1; i <= m; i++) {
		int x, y; read(x), read(y);
		q[x].push_back(make_pair(y, i));
	}
	work(1, 0);
	for (int i = 1; i <= m; i++)
		writeln(ans[i]);
	return 0;
}

**【E】**ALT

【思路要点】

  • 最大权闭合子图 + + + 树上倍增建图。
  • 时间复杂度 O ( D i n i c ( N + Q , N + Q L o g N ) ) O(Dinic(N+Q,N+QLogN)) O(Dinic(N+Q,N+QLogN))

【代码】

#include<bits/stdc++.h>
using namespace std;
const int MAXP = 4e5 + 5;
const int MAXN = 2e4 + 5;
const int MAXLOG = 16;
const int INF = 2e9;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
template <typename T> void chkmin(T &x, T y) {x = min(x, y); } 
template <typename T> void read(T &x) {
	x = 0; int f = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
	for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
	x *= f;
}
template <typename T> void write(T x) {
	if (x < 0) x = -x, putchar('-');
	if (x > 9) write(x / 10);
	putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {
	write(x);
	puts("");
}
struct edge {int dest, flow; unsigned pos; };
vector <edge> a[MAXP];
int n, m, s, t, dist[MAXP];
unsigned curr[MAXP];
vector <int> b[MAXN], home[MAXN];
int tot, point[MAXN][MAXLOG], pos[MAXN];
int depth[MAXN], father[MAXN][MAXLOG];
void addedge(int x, int y, int z) {
	a[x].push_back((edge) {y, z, a[y].size()});
	a[y].push_back((edge) {x, 0, a[x].size() - 1});
}
int dinic(int pos, int limit) {
	if (pos == t) return limit;
	int used = 0, tmp;
	for (unsigned &i = curr[pos]; i < a[pos].size(); i++)
		if (a[pos][i].flow != 0 && dist[pos] + 1 == dist[a[pos][i].dest] && (tmp = dinic(a[pos][i].dest, min(limit - used, a[pos][i].flow)))) {
			used += tmp;
			a[pos][i].flow -= tmp;
			a[a[pos][i].dest][a[pos][i].pos].flow += tmp;
			if (used == limit) return used;
		}
	return used;
}
bool bfs() {
	static int q[MAXP];
	int l = 0, r = 0;
	memset(dist, 0, sizeof(dist));
	dist[s] = 1, q[0] = s;
	while (l <= r) {
		int tmp = q[l];
		for (unsigned i = 0; i < a[tmp].size(); i++)
			if (dist[a[tmp][i].dest] == 0 && a[tmp][i].flow != 0) {
				q[++r] = a[tmp][i].dest;
				dist[q[r]] = dist[tmp] + 1;
			}
		l++;
	}
	return dist[t] != 0;
}
void work(int pos, int fa) {
	depth[pos] = depth[fa] + 1;
	father[pos][0] = fa;
	for (int i = 1; i < MAXLOG; i++) {
		father[pos][i] = father[father[pos][i - 1]][i - 1];
		if (father[pos][i]) {
			point[pos][i] = ++tot;
			addedge(point[pos][i], point[pos][i - 1], INF);
			addedge(point[pos][i], point[father[pos][i - 1]][i - 1], INF);
		}
	}
	for (unsigned i = 0; i < b[pos].size(); i++)
		if (b[pos][i] != fa) {
			point[b[pos][i]][0] = home[pos][i];
			work(b[pos][i], pos);
		}
}
int lca(int x, int y) {
	if (depth[x] < depth[y]) swap(x, y);
	for (int i = MAXLOG - 1; i >= 0; i--)
		if (depth[father[x][i]] >= depth[y]) x = father[x][i];
	if (x == y) return x;
	for (int i = MAXLOG - 1; i >= 0; i--)
		if (father[x][i] != father[y][i]) {
			x = father[x][i];
			y = father[y][i];
		}
	return father[x][0];
}
int main() {
	read(n), read(m);
	for (int i = 1; i <= n - 1; i++) {
		int x, y; read(x), read(y);
		b[x].push_back(y);
		home[x].push_back(i);
		b[y].push_back(x);
		home[y].push_back(i);
	}
	s = 0, tot = n - 1;
	work(1, 0);
	for (int i = 1; i <= m; i++) {
		int x, y; read(x), read(y);
		int z = lca(x, y);
		pos[i] = ++tot;
		addedge(s, pos[i], 1);
		for (int j = MAXLOG - 1; j >= 0; j--)
			if (depth[father[x][j]] >= depth[z]) {
				addedge(pos[i], point[x][j], INF);
				x = father[x][j];
			}
		for (int j = MAXLOG - 1; j >= 0; j--)
			if (depth[father[y][j]] >= depth[z]) {
				addedge(pos[i], point[y][j], INF);
				y = father[y][j];
			}
	}
	t = ++tot;
	for (int i = 1; i <= n - 1; i++)
		addedge(i, t, 1);
	int ans = 0;
	while (bfs()) {
		memset(curr, 0, sizeof(curr));
		ans += dinic(s, INF);
	}
	printf("%d\n", ans);
	bfs(); int size = 0;
	for (int i = 1; i <= m; i++)
		if (dist[pos[i]] == 0) size++;
	printf("%d ", size);
	for (int i = 1; i <= m; i++)
		if (dist[pos[i]] == 0) printf("%d ", i);
	printf("\n");
	size = 0;
	for (int i = 1; i <= n - 1; i++)
		if (dist[i] != 0) size++;
	printf("%d ", size);
	for (int i = 1; i <= n - 1; i++)
		if (dist[i] != 0) printf("%d ", i);
	printf("\n");
	return 0;
}
### Codeforces Round 260 Div. 1 题目及题解 #### A. Vasya and Multisets 在这道题目中,Vasya有一个由n个整数组成的序列。目标是通过将这些数分成若干组,使得每组中的所有数都相同,并且尽可能减少分组的数量。 为了实现这一目的,可以利用贪心算法来解决这个问题。具体来说,在遍历输入数据的同时维护当前最大频率计数器,对于每一个新遇到的不同数值增加一个新的集合[^1]。 ```cpp #include <bits/stdc++..h> using namespace std; void solve() { int n; cin >> n; unordered_map<int, int> freq; for (int i = 0; i < n; ++i) { int x; cin >> x; freq[x]++; } int maxFreq = 0; for (auto& p : freq) { maxFreq = max(maxFreq, p.second); } cout << maxFreq << "\n"; } ``` #### B. Pashmak and Graph 此问题涉及图论领域的一个经典最短路径计算案例。给定一张带权无向图以及起点S和终点T,要求求出从S到T经过至少一条边后的最小花费总和。 Dijkstra算法适用于此类场景下的单源最短路径查询任务。初始化距离表dist[]为无穷大(INF),仅设置起始节点的距离为零;随后借助优先队列选取未访问过的最近邻接顶点u更新其相邻结点v至目前为止所知的最佳到达成本min{dist[u]+w(u,v)}直至找到终止条件即抵达目的地t或处理完毕所有可达区域内的候选者为止。 ```cpp typedef pair<long long,int> pli; const long long INF = LLONG_MAX / 3; struct Edge { int to, cost; }; vector<Edge> G[MAX_V]; long long d[MAX_V]; bool dijkstra(int s, int t){ priority_queue<pli,vector<pl>,greater<pl>> que; fill(d,d+MAX_V,INF); d[s]=0; que.push(pli(0,s)); while(!que.empty()){ pli p=que.top();que.pop(); int v=p.second; if(d[v]<p.first) continue; for(auto e:G[v]){ if(d[e.to]>d[v]+e.cost){ d[e.to]=d[v]+e.cost; que.push(pli(d[e.to],e.to)); } } } return d[t]!=INF; } ``` #### C. DZY Loves Colors 这是一道关于颜色染色的问题。给出长度为N的一维网格,初始状态下每个格子都有一个默认的颜色编号。现在有M次操作机会改变某些位置上的色彩值,最终目的是统计整个条带上共有几种不同的色调存在。 采用离散化技术预处理原始输入并记录下各段连续同色区间的端点坐标范围,之后针对每一次修改请求动态调整受影响部分的信息结构体(如线段树),最后依据累积的结果得出答案。 ```cpp // 假设已经实现了上述提到的数据结构 SegmentTree 和 update 函数 SegmentTree st; for(int i=1;i<=m;++i){ int l,r,c; scanf("%d%d%d",&l,&r,&c); update(l,r,c); } printf("%lld\n",st.query()); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值