【思路要点】
- 先考虑一个子问题,在 N∗NN*NN∗N 棋盘的主对角线及其右下方放置 KKK 个不能互相攻击的车,求方案数 f(N,k)f(N,k)f(N,k)。考虑最后一行的放置情况,有递推式 f(N,k)=f(N−1,k)+(N−k+1)∗f(N−1,k−1)f(N,k)=f(N-1,k)+(N-k+1)*f(N-1,k-1)f(N,k)=f(N−1,k)+(N−k+1)∗f(N−1,k−1) 。观察该递推式的形式,不难发现其实际上等于第二类斯特林数 S(N+1,N+1−k)S(N+1,N+1-k)S(N+1,N+1−k) 。
- 在本题中,首先,象的移动方式不会改变坐标 (x,y)(x,y)(x,y) 对应的 x+yx+yx+y 的奇偶性,我们可以将这两类坐标分开处理,再将结果卷积起来,得到答案。
- 考虑 x+yx+yx+y 为偶数的坐标,我们将棋盘旋转 454545 度,我们得到了一个类似于上述子问题的问题形式,每一行可以放入车的方格数为 1,1,3,3,5,5,7,7,...1,1,3,3,5,5,7,7,...1,1,3,3,5,5,7,7,... ,换而言之,偶数行的主对角线上是不允许放入棋子的。
- 考虑对这条新加入的限制进行容斥,记 M=⌊N2⌋M=\lfloor\frac{N}{2}\rfloorM=⌊2N⌋ ,新问题的方案数为 g(N,K)g(N,K)g(N,K) 。枚举强制放入棋子的方格数 iii ,则有 g(N,k)=∑i=0M(−1)i(Mi)S(N−i+1,N−k+1)g(N,k)=\sum_{i=0}^{M}(-1)^i\binom{M}{i}S(N-i+1,N-k+1)g(N,k)=∑i=0M(−1)i(iM)S(N−i+1,N−k+1) 。
- 展开斯特林数,有 g(N,k)=∑i=0M(−1)i(Mi)1(N−k−1)!∑j=0N−k+1(−1)N−k+1−j(N−k+1j)jN−i+1g(N,k)=\sum_{i=0}^{M}(-1)^i\binom{M}{i}\frac{1}{(N-k-1)!}\sum_{j=0}^{N-k+1}(-1)^{N-k+1-j}\binom{N-k+1}{j}j^{N-i+1}g(N,k)=∑i=0M(−1)i(iM)(N−k−1)!1∑j=0N−k+1(−1)N−k+1−j(jN−k+1)jN−i+1 。
- 交换求和顺序,有 g(N,k)=1(N−k−1)!∑j=0N−k+1(−1)N−k+1−j(N−k+1j)∑i=0M(−1)i(Mi)jN−i+1g(N,k)=\frac{1}{(N-k-1)!}\sum_{j=0}^{N-k+1}(-1)^{N-k+1-j}\binom{N-k+1}{j}\sum_{i=0}^{M}(-1)^{i}\binom{M}{i}j^{N-i+1}g(N,k)=(N−k−1)!1∑j=0N−k+1(−1)N−k+1−j(jN−k+1)∑i=0M(−1)i(iM)jN−i+1 。
- 由二项式定理,有 g(N,k)=1(N−k−1)!∑j=0N−k+1(−1)N−k+1−j(N−k+1j)(j−1)MjN−M+1g(N,k)=\frac{1}{(N-k-1)!}\sum_{j=0}^{N-k+1}(-1)^{N-k+1-j}\binom{N-k+1}{j}(j-1)^Mj^{N-M+1}g(N,k)=(N−k−1)!1∑j=0N−k+1(−1)N−k+1−j(jN−k+1)(j−1)MjN−M+1 。
- NTTNTTNTT 对其卷积即可,时间复杂度 O(NLogN)O(NLogN)O(NLogN) 。
【代码】
#include<bits/stdc++.h> using namespace std; const int MAXN = 262144; const int P = 998244353; typedef long long ll; typedef long double ld; typedef unsigned long long ull; template <typename T> void chkmax(T &x, T y) {x = max(x, y); } template <typename T> void chkmin(T &x, T y) {x = min(x, y); } template <typename T> void read(T &x) { x = 0; int f = 1; char c = getchar(); for (; !isdigit(c); c = getchar()) if (c == '-') f = -f; for (; isdigit(c); c = getchar()) x = x * 10 + c - '0'; x *= f; } template <typename T> void write(T x) { if (x < 0) x = -x, putchar('-'); if (x > 9) write(x / 10); putchar(x % 10 + '0'); } template <typename T> void writeln(T x) { write(x); puts(""); } namespace NTT { const int MAXN = 262144; const int P = 998244353; const int G = 3; int power(int x, int y) { if (y == 0) return 1; int tmp = power(x, y / 2); if (y % 2 == 0) return 1ll * tmp * tmp % P; else return 1ll * tmp * tmp % P * x % P; } int N, Log, home[MAXN]; void NTTinit() { for (int i = 0; i < N; i++) { int ans = 0, tmp = i; for (int j = 1; j <= Log; j++) { ans <<= 1; ans += tmp & 1; tmp >>= 1; } home[i] = ans; } } void NTT(int *a, int mode) { for (int i = 0; i < N; i++) if (home[i] < i) swap(a[i], a[home[i]]); for (int len = 2; len <= N; len <<= 1) { int delta; if (mode == 1) delta = power(G, (P - 1) / len); else delta = power(G, P - 1 - (P - 1) / len); for (int i = 0; i < N; i += len) { int now = 1; for (int j = i, k = i + len / 2; k < i + len; j++, k++) { int tmp = a[j]; int tnp = 1ll * a[k] * now % P; a[j] = (tmp + tnp) % P; a[k] = (tmp - tnp + P) % P; now = 1ll * now * delta % P; } } } if (mode == -1) { int inv = power(N, P - 2); for (int i = 0; i < N; i++) a[i] = 1ll * a[i] * inv % P; } } void times(int *a, int *b, int *c, int limit) { N = 1, Log = 0; while (N < 2 * limit) { N <<= 1; Log++; } for (int i = limit; i < N; i++) a[i] = b[i] = 0; NTTinit(); NTT(a, 1); NTT(b, 1); for (int i = 0; i < N; i++) c[i] = 1ll * a[i] * b[i] % P; NTT(c, -1); } } int power(int x, int y) { if (y == 0) return 1; int tmp = power(x, y / 2); if (y % 2 == 0) return 1ll * tmp * tmp % P; else return 1ll * tmp * tmp % P * x % P; } int fac[MAXN], inv[MAXN]; int odd[MAXN], even[MAXN], res[MAXN]; void update(int &x, int y) { x += y; if (x >= P) x -= P; } void init(int n) { fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = 1ll * fac[i - 1] * i % P; inv[n] = power(fac[n], P - 2); for (int i = n - 1; i >= 0; i--) inv[i] = inv[i + 1] * (i + 1ll) % P; } void getans(int n, int *res) { static int a[MAXN], b[MAXN]; memset(a, 0, sizeof(a)); memset(b, 0, sizeof(b)); int m = n / 2; for (int i = 0; i <= n + 1; i++) { a[i] = 1ll * inv[i] * power(i, n - m + 1) % P * power((i - 1 + P) % P, m) % P; b[i] = 1ll * inv[i] * power(P - 1, i) % P; } static int c[MAXN]; NTT :: times(a, b, c, n + 2); for (int i = 0; i <= n; i++) res[i] = c[n - i + 1]; } int main() { int n; read(n); init(n + 1); getans(n, odd); getans(n - 1, even); for (int i = n; i >= 1; i--) update(even[i], 1ll * even[i - 1] * (n - i) % P); NTT :: times(odd, even, res, n + 1); for (int i = 1; i <= 2 * n - 1; i++) printf("%d ", res[i]); return 0; }