【思路要点】
- 考虑方差的期望的公式,记 F 0 = 1 , F i = ( 2 i − 1 ) F i − 1 F_0=1,F_i=(2i-1)F_{i-1} F0=1,Fi=(2i−1)Fi−1 , M e t Met Met 表示可能的权值序列的集合,则有
A n s = 1 ∣ M e t ∣ ∑ a ∈ M e t ∑ i = 1 N ( a i − ∑ a i N ) 2 N A n s = 1 N × F N ∑ a ∈ M e t ∑ i = 1 N ( a i 2 − 2 a i ( ∑ a i ) 2 N + ( ∑ a i ) 2 N 2 ) A n s = 1 N × F N ∑ a ∈ M e t ∑ i = 1 N a i 2 − 1 N 2 × F N ∑ a ∈ M e t ( ∑ a i ) 2 Ans=\frac{1}{|Met|}\sum_{a_\in Met}\frac{\sum_{i=1}^{N}(a_i-\frac{\sum a_i}{N})^2}{N}\\Ans=\frac{1}{N\times F_N}\sum_{a\in Met}\sum_{i=1}^{N}(a_i^2-2\frac{a_i(\sum a_i)^2}{N}+\frac{(\sum a_i)^2}{N^2})\\Ans=\frac{1}{N\times F_N}\sum_{a\in Met}\sum_{i=1}^{N}a_i^2-\frac{1}{N^2\times F_N}\sum_{a\in Met}(\sum a_i)^2 Ans=∣Met∣1a∈Met∑N∑i=1N(ai−N∑ai)2Ans=N×FN1a∈Met∑i=1∑N(ai2−2Nai(∑ai)2+N2(∑ai)2)Ans=N×FN1a∈Met∑i=1∑Nai2−N2×FN1a∈Met∑(∑ai)2- 因此答案由两部分组成,对于第一部分,可以考虑交换求和顺序,计算
1 N × F N ∑ i = 1 N a i 2 ∑ a ∈ M e t , a i ∈ a 1 = 1 N × F N ∑ i = 1 2 N ∑ j = i + 1 2 N ( j − i ) 2 × F N − 1 = 1 N × ( 2 N − 1 ) ∑ i = 1 2 N ∑ j = i + 1 2 N ( j − i ) 2 \frac{1}{N\times F_N}\sum_{i=1}^{N}a_i^2\sum_{a\in Met,a_i\in a}1\\=\frac{1}{N\times F_N}\sum_{i=1}^{2N}\sum_{j=i+1}^{2N}(j-i)^2\times F_{N-1}\\=\frac{1}{N\times (2N-1)}\sum_{i=1}^{2N}\sum_{j=i+1}^{2N}(j-i)^2 N×FN1i=1∑Nai2a∈Met,ai∈a∑1=N×FN1i=1∑2Nj=i+1∑2N(j−i)2×FN−1=N×(2N−1)1i=1∑2Nj=i+1∑2N(j−i)2- 可以发现求和符号内的部分是一个多项式,可以用插值或 B e r l e k a m p − M a s s e y Berlekamp-Massey Berlekamp−Massey 算法 解决。
- 对于第二部分,考虑 ( ∑ a i ) 2 (\sum a_i)^2 (∑ai)2 的组合意义,即在 ∑ a i \sum a_i ∑ai 个元素中依次选择两个的方案数,考虑枚举这两个元素,有
1 N 2 × F N ∑ a ∈ M e t ( ∑ a i ) 2 = 1 N 2 × F N ∑ i = 1 2 N ∑ j = i + 1 2 N ( ( j − i ) 2 × F N − 1 + ∑ k = 1 , k ≠ i , j 2 N ∑ l = k + 1 , l ≠ i , j 2 N ( j − i ) ( l − k ) × F N − 2 ) = 1 N 2 × ( 2 N − 1 ) × ( 2 N − 3 ) ∑ i = 1 2 N ∑ j = i + 1 2 N ( ( j − i ) 2 × ( 2 N − 1 ) + ∑ k = 1 , k ≠ i , j 2 N ∑ l = k + 1 , l ≠ i , j 2 N ( j − i ) ( l − k ) ) \frac{1}{N^2\times F_N}\sum_{a\in Met}(\sum a_i)^2\\=\frac{1}{N^2\times F_N}\sum_{i=1}^{2N}\sum_{j=i+1}^{2N}((j-i)^2\times F_{N-1}+\sum_{k=1,k\ne i,j}^{2N}\sum_{l=k+1,l\ne i,j}^{2N}(j-i)(l-k)\times F_{N-2})\\=\frac{1}{N^2\times (2N-1)\times(2N-3)}\sum_{i=1}^{2N}\sum_{j=i+1}^{2N}((j-i)^2\times (2N-1)+\sum_{k=1,k\ne i,j}^{2N}\sum_{l=k+1,l\ne i,j}^{2N}(j-i)(l-k)) N2×FN1a∈Met∑(∑ai)2=N2×FN1i=1∑2Nj=i+1∑2N((j−i)2×FN−1+k=1,k̸=i,j∑2Nl=k+1,l̸=i,j∑2N(j−i)(l−k)×FN−2)=N2×(2N−1)×(2N−3)1i=1∑2Nj=i+1∑2N((j−i)2×(2N−1)+k=1,k̸=i,j∑2Nl=k+1,l̸=i,j∑2N(j−i)(l−k))- 可以发现求和符号内的部分同样是一个多项式,可以用插值或 B e r l e k a m p − M a s s e y Berlekamp-Massey Berlekamp−Massey 算法 解决。
- 时间复杂度 O ( M 5 + M 2 L o g N ) O(M^5+M^2LogN) O(M5+M2LogN) ,其中 M M M 为递推阶数,有 M = 7 M=7 M=7 。
【代码】
#include<bits/stdc++.h> using namespace std; const int MAXN = 5005; const int MAXLOG = 62; const int P = 1e9 + 7; typedef long long ll; typedef long double ld; typedef unsigned long long ull; template <typename T> void chkmax(T &x, T y) {x = max(x, y); } template <typename T> void chkmin(T &x, T y) {x = min(x, y); } template <typename T> void read(T &x) { x = 0; int f = 1; char c = getchar(); for (; !isdigit(c); c = getchar()) if (c == '-') f = -f; for (; isdigit(c); c = getchar()) x = x * 10 + c - '0'; x *= f; } template <typename T> void write(T x) { if (x < 0) x = -x, putchar('-'); if (x > 9) write(x / 10); putchar(x % 10 + '0'); } template <typename T> void writeln(T x) { write(x); puts(""); } struct LinearSequence { vector <int> a[MAXN]; int cnt, delta[MAXN], fail[MAXN]; int k, h[MAXN], now[MAXLOG][MAXN]; int power(int x, int y) { if (y == 0) return 1; int tmp = power(x, y / 2); if (y % 2 == 0) return 1ll * tmp * tmp % P; else return 1ll * tmp * tmp % P * x % P; } void times(int *res, int *x, int *y) { static int tmp[MAXN]; memset(tmp, 0, sizeof(tmp)); for (int i = 0; i <= k - 1; i++) for (int j = 0; j <= k - 1; j++) tmp[i + j] = (tmp[i + j] + 1ll * x[i] * y[j]) % P; for (int i = 2 * k - 2; i >= k; i--) { int val = tmp[i]; tmp[i] = 0; for (unsigned j = 0; j < a[cnt].size(); j++) tmp[i - j - 1] = (tmp[i - j - 1] + 1ll * val * a[cnt][j]) % P; } memcpy(res, tmp, sizeof(tmp)); } void init(int n, int *val) { for (int i = 0; i <= cnt; i++) a[i].clear(); cnt = 0; for (int i = 1; i <= n; i++) { delta[i] = val[i]; for (unsigned j = 0; j < a[cnt].size(); j++) delta[i] = (delta[i] - 1ll * a[cnt][j] * val[i - j - 1] % P + P) % P; if (delta[i] == 0) continue; fail[cnt] = i; if (cnt == 0) { a[++cnt].resize(i); continue; } int mul = 1ll * delta[i] * power(delta[fail[cnt - 1]], P - 2) % P; a[cnt + 1].resize(i - fail[cnt - 1] - 1); a[cnt + 1].push_back(mul); for (unsigned j = 0; j < a[cnt - 1].size(); j++) a[cnt + 1].push_back(1ll * a[cnt - 1][j] * (P - mul) % P); if (a[cnt + 1].size() < a[cnt].size()) a[cnt + 1].resize(a[cnt].size()); for (unsigned j = 0; j < a[cnt].size(); j++) a[cnt + 1][j] = (a[cnt + 1][j] + a[cnt][j]) % P; cnt++; } //cerr << a[cnt].size() << endl; memset(now, 0, sizeof(now)); k = a[cnt].size(); if (k == 1) now[0][0] = a[cnt][0]; else now[0][1] = 1; for (int i = 1; i <= 2 * k; i++) h[i] = val[i]; for (int p = 1; p < MAXLOG; p++) times(now[p], now[p - 1], now[p - 1]); } int query(long long n) { if (n <= k) return h[n]; n -= k; static int res[MAXN]; memset(res, 0, sizeof(res)); res[0] = 1; for (int p = 0; p < MAXLOG; p++) { long long tmp = 1ll << p; if (n & tmp) times(res, res, now[p]); } int ans = 0; for (int i = 0; i <= k - 1; i++) ans = (ans + 1ll * res[i] * h[i + k]) % P; return ans; } } Sqr, Ind; int f[MAXN], sqr[MAXN], ind[MAXN]; void update(int &x, int y) { x += y; if (x >= P) x -= P; } int power(int x, int y) { if (y == 0) return 1; int tmp = power(x, y / 2); if (y % 2 == 0) return 1ll * tmp * tmp % P; else return 1ll * tmp * tmp % P * x % P; } int getsqr(int n) { int ans = 0; for (int i = 1; i <= 2 * n; i++) for (int j = i + 1; j <= 2 * n; j++) { update(ans, 1ll * (j - i) * (j - i) * (2 * (n - 1) - 1) % P); for (int k = 1; k <= 2 * n; k++) if (k != i && k != j) { for (int l = k + 1; l <= 2 * n; l++) if (l != i && l != j) update(ans, 1ll * (j - i) * (l - k) % P); } } return ans; } int getind(int n) { int ans = 0; for (int i = 1; i <= 2 * n; i++) for (int j = i + 1; j <= 2 * n; j++) update(ans, 1ll * (j - i) * (j - i) % P); return ans; } int main() { freopen("match.in", "r", stdin); freopen("match.out", "w", stdout); int n, m = 20; read(n); for (int i = 1; i <= m; i++) { sqr[i] = getsqr(i); ind[i] = getind(i); } Sqr.init(m, sqr); Ind.init(m, ind); int ts = Sqr.query(n), ti = Ind.query(n); int ans = 1ll * ti * power(2 * n - 1, P - 2) % P * power(n, P - 2) % P; update(ans, P - 1ll * ts * power(2 * n - 1, P - 2) % P * power(2 * n - 3, P - 2) % P * power(n, P - 2) % P * power(n, P - 2) % P); writeln(ans); return 0; }