【题目链接】
【思路要点】
分两步做,首先,我们来看如何求 ∏Ni=1d(i)i ∏ i = 1 N d ( i ) i
考虑约数个数公式,我们来枚举每一个质数次幂的贡献,令 sum(i)=∑Ni=1i=N(N+1)2 s u m ( i ) = ∑ i = 1 N i = N ( N + 1 ) 2 ,有:
∏Ni=1d(i)i=∏p is a prime∏pk≤N(k+1)cnt ∏ i = 1 N d ( i ) i = ∏ p i s a p r i m e ∏ p k ≤ N ( k + 1 ) c n t
其中 cnt=pk∗sum(⌊Npk⌋)−pk+1∗sum(⌊Npk+1⌋) c n t = p k ∗ s u m ( ⌊ N p k ⌋ ) − p k + 1 ∗ s u m ( ⌊ N p k + 1 ⌋ )
注意由于 Mod=1012+39