引擎:完美游戏的幕后推手

文/唯晶科技 郭振平

    编者按:引擎在游戏研发中起着重要的作用,很多开发人员在选择游戏引擎过程中会事先做一些了解。这期我们向大家简单介绍Gamebryo引擎的一些情况,以后,我们将为大家带来更多有关游戏引擎方面的介绍。

    前言:2008年度Gamebryo巡回亚洲研讨会圆满落幕,包括北京、上海、深圳、厦门、台北等游戏界相关朋友们都应邀参加这段时间的研讨会。较以往不同的是,当中有不少非游戏从业朋友是因为想接触游戏制作而前来参加,为共同探讨Gamebryo技术,交流使用Gamebryo的经验,在研讨会中,Scaleform公司参与协助对Scaleform的GFx与 Gamebryo的结合使用提供指导。两年多来,Emergent公司通过唯晶科技的代理支持,在大中华地区迅速发展。目前,包括盛大、九城、久游、腾讯、渡口游戏、烛龙、宝德以及台湾的乐升科技(XPEC)、基因游戏、亿启数位娱乐和Seed Studio等在内的众多公司都在使用Gamebryo开发游戏。借此次活动的余热,笔者在这里再向大家简单介绍一下Gamebryo。

一、Gamebryo的基本构成及其工作流程

    Gamebryo是一款便捷且易上手的开放式跨平台游戏开发引擎,他整合了多家当今的成熟技术。图01说明了Gamebryo的基本构成和技术特点。我们随后对其中的主要技术特点做简单的介绍。

Gamebryo的基本构成和技术特点

    那么,Gamebryo中的技术是如何在开发游戏中发挥作用的呢?图02演示了使用Gamebryo的工作流程。

 Gamebryo的工作流程

    从图中可看出,Gamebryo为当今主要的DCC工具(MAX、Maya、XSI),它都提供了游戏所需资源的导出插件。这些导出插件的用户界面简单、方便且易使用。美术人员可轻而易举地设置导出环境。从而导出游戏所需的数据:

• NIF文件包含与几何模型有关的数据;
• KF文件包含动画数据;
• KFM文件包含定义一个角色所需的NIF和KF以及动画序列间的默认转换方式。

    在上图中,我们还看到Gamebryo所提供的三个主要工具:

• 资源观察器(AssetViewer)
    这个工具可直接从DCC工具中启动。美术人员可以在导出数据前用它对DCC中的导出物件、人物设置、场景效果等进行观察以便在导出前进行修改。当然也可用来对已经导出的NIF进行观察。

• 动画工具(Animation Tool)
    此工具可以设置导出的动画序列之间的转换,建立多层动画组合。它所产生KFM文件定义了一个完整的角色。

• 场景编辑器(Scene Designer)
    顾名思义此工具是美术和策划用来创建游戏场景的。2.5版增加的地形编辑功能使得场景编辑器更上一层楼。从DCC工具中导出的物件、人物可以通过此编辑器加到场景中。也可方便地设置场景中的灯光、相机等。使用者也可以通过写插件的方式拓展编辑器的功能。场景编辑器产生的GSA文件是XML格式,可被直接加载到游戏中。

    上述三个主要工具的使用在Gamebryo文档中都有详细的描述,参考网站:www.gamebryo101.com可以通过看录像的方式了解如何使用Gamebryo DCC插件以及如何使用Gamebryo所带的三个主要工具。


二、Gamebryo的主要技术特点

    前面讲到了在使用Gamebryo工作流程中,我们有了游戏中所需的资源。现在该是谈谈Gamebryo技术特点的时候了。正是这些优秀的技术才使得这些资源高效高质量地展现在游戏玩家的面前。那么,Gamebryo的主要技术包括哪些呢?笔者在下文中做简单介绍。

场景图结构(Scene Graph)
    Gamebryo的场景图是一张从场景的根节点起单向非循环的层级结构图表。这张图代表了听得见摸得着的三维世界,是Gamebryo的场景数据库的基础。图03是一张代表从3DS MAX中导出的直升机的场景图。

 


从3DS MAX中导出的直升机的场景图

    图中右边即为代表直升机的场景图。“SceneNode”为此场景图的根节点。在这种结构下,场景可以有效地以深度优先的方式计算所有物体在世界坐标下的转换矩阵以及包围球(Bounding Sphere)。场景图中的所有节点的类(class)都继承于NiAVObject。

渲染系统(Frame Rendering)

 


【图04:Gamebryo渲染系统的架构】

• Render Frame(NiRenderFrame)
这是Gamebryo渲染系统中的最上层界面。它代表一个完整的渲染过程。从图中可知,这一过程是由一系列的Render Step来完成的。

• Render Step (NiRenderStep)
Render Step是一个独立的渲染过程。它既可完成主场景的渲染,又可完成一个特效的渲染过程(比如HDR,DOF等)。一个独立的渲染操作过程可能由一个或几个Render Click来完成。

• Render Click (NiRenderClick)
Render Click是一个针对单一渲染目标(Render Target Group)的独立的渲染操作。

• Render View (NiRenderView)
Render View直接对参与渲染的物体进行处理(如剪切、Alpha排序等)。一个Render View可以参与不同Render Click的渲染操作。

    这一架构使得Gamebryo渲染系统的建立与管理更为方便灵活。使用者可以根据渲染的需要来安排Render Step、Render Click和Render View的顺序。同时,NiRenderFrame、NiRenderStep、NiRenderClick都可以靠设置Callback来完成渲染前以及渲染后使用者需要做的事情。



材质系统(Material/Shader/Texture)

    Gamebryo的材质系统是一种机制。这种机制有效地为基于参与渲染的几何模型状态的着色器(Shader)提供服务。在这样的机制下,美术人员可在DCC工具中轻松地设置材质即可。而Gamebryo的材质系统会产生所需的Shader,并储存在缓冲存储器中。Gamebryo有自己的Shader文件格式(即NSF格式),同时也支持其它格式(如FX)。在Gamebryo中,对于在高端机器上运行的游戏,一般会采用标准材质(Standard Material)。而对低端机器来讲,会用到固定管线(fix-pipeline)。

多线程管理系统(Floodgate)

    Floodgate系统是一个跨平台的多线程管理系统(也可说是一个数据流处理器管理系统)。在Gamebryo中,几何模型的变形、粒子系统的模拟计算、人物模型的蒙皮计算等都由Floodgate系统来完成。图05显示Floodgate在系统中的工作流程。其中一片云的部分就是Floodgate系统。主线程把任务交给Floodgate系统,它完成之后再返回主线程。
 

Floodgate在系统中的工作流程

    有了Floodgate系统,Gamebryo的用户在处理与多线程有关的程序时就不必再写底层代码了。只要建立所要完成的任务(Task),并把它交给Floodgate系统就可以了。我们在这里仅仅提到了这个系统。今后有机会再详细介绍。

几何模型系统(NiMesh)

    新的几何系统(NiMesh)是由数据流组成的。上面讲到几何模型的计算是由NiMeshModifier通过Floodgate系统来完成的。图06显示了几何系统与Floodgate系统之间的关系。NiMeshModifier会把任务交给Floodgate系统,并等待它完成任务返回。对这方面的编程方法感兴趣的朋友可以参照Gamebryo所带的例子MeshCreation。

几何系统与Floodgate系统之间的关系

    与模型系统的处理方式一样,Gamebryo所带的强大、灵活且可拓展的粒子特效的模拟计算也是通过Floodgate系统来完成的。

动画系统(Animation)

• Gamebryo不仅支持人物模型的细节等级,也支持骨胳的细节等级。等级之间的切换由游戏系统的逻辑来完成。这部分逻辑是要由游戏开发者自己来写的。
• 支持骨胳动画、面部动画、层级动画(Layered Animation)
• 支持动画序列与动画序列,动画与物理模拟结果的混合。动画序列之间的混和方式可由动画工具(Animation Tool)来设定。
• 支持动画序列之间的同步处理。
• 支持人物根节点的动画累加。
• 具有响应动画驱动事件的功能。

物理系统(Physics)

    在Gamebryo中,物理系统使用的是NVidia公司的PhysX系统。Emergent已经完整地把PhysX系统整合到Gamebryo中了。使用者要做的只是拿到NVidia公司的PhysX SDK及其DCC工具的插件。导出带有物理属性的物体或人物并加载到游戏中。在游戏程序中,首先对物理系统初始,再在更新过程中使Gamebryo系统和物理系统能顺利地交换数据。这个交换过程是这样完成的,首先由Gamebryo系统向物理系统传递数据,物理系统完成模拟计算后再把结果返还给Gamebryo系统。其工作流程如图07所示。
 

Gamebryo物理系统的工作流程

    我们知道如上所述的Gamebryo的技术特点仅仅是个概括性的描述。对于已经使用过Gamebryo的朋友们来说是远远不够的。今后如有机会,我们会对Gamebryo的主要技术特点以各种方式做更为详细的介绍。

【作者简介】

    郭振平,资深软件工程师,Emergent Game Technologies。2006年加入Emergent Game Technologies团队,为Emergent的亚洲客户提供技术支持。自获得应用科学硕士学位后,他已从事三维软件和游戏引擎开发工作16年。加入Emergent之前,他参与开发了SoftImage的三维动画工具软件,Alias/Wavefront的Maya,Electric Image的三维工具-Electric Image Universe。在Rockstar,他参与了《SpyHunter 2》,《Midnight Club 2》,《Red Dead Revolver》等游戏的开发。在Collective,参与了《Star Wars Episode III: Revenge of the Sith》,《Marc Ecko's Getting Up: Contents Under Pressure》,《The Da Vinci Code》,《Dirty Harry》等游戏的开发。作者邮箱是gamebryosupport@winkingworks.comsupport@gamebryo.com



基于数据挖掘的音乐推荐系统设计与实现 需要一个代码说明,不需要论文 采用python语言,django框架,mysql数据库开发 编程环境:pycharm,mysql8.0 系统分为前台+后台模式开发 网站前台: 用户注册, 登录 搜索音乐,音乐欣赏(可以在线进行播放) 用户登陆时选择相关感兴趣的音乐风格 音乐收藏 音乐推荐算法:(重点) 本课题需要大量用户行为(如播放记录、收藏列表)、音乐特征(如音频特征、歌曲元数据)等数据 (1)根据用户之间相似性或关联性,给一个用户推荐与其相似或有关联的其他用户所感兴趣的音乐; (2)根据音乐之间的相似性或关联性,给一个用户推荐与其感兴趣的音乐相似或有关联的其他音乐。 基于用户的推荐和基于物品的推荐 其中基于用户的推荐是基于用户的相似度找出相似相似用户,然后向目标用户推荐其相似用户喜欢的东西(和你类似的人也喜欢**东西); 而基于物品的推荐是基于物品的相似度找出相似的物品做推荐(喜欢该音乐的人还喜欢了**音乐); 管理员 管理员信息管理 注册用户管理,审核 音乐爬虫(爬虫方式爬取网站音乐数据) 音乐信息管理(上传歌曲MP3,以便前台播放) 音乐收藏管理 用户 用户资料修改 我的音乐收藏 完整前后端源码,部署后可正常运行! 环境说明 开发语言:python后端 python版本:3.7 数据库:mysql 5.7+ 数据库工具:Navicat11+ 开发软件:pycharm
MPU6050是一款广泛应用在无人机、机器人和运动设备中的六轴姿态传感器,它集成了三轴陀螺仪和三轴加速度计。这款传感器能够实时监测并提供设备的角速度和线性加速度数据,对于理解物体的动态运动状态至关重要。在Arduino平台上,通过特定的库文件可以方便地与MPU6050进行通信,获取并解析传感器数据。 `MPU6050.cpp`和`MPU6050.h`是Arduino库的关键组成部分。`MPU6050.h`是头文件,包含了定义传感器接口和函数声明。它定义了类`MPU6050`,该类包含了初始化传感器、读取数据等方法。例如,`begin()`函数用于设置传感器的工作模式和I2C地址,`getAcceleration()`和`getGyroscope()`则分别用于获取加速度和角速度数据。 在Arduino项目中,首先需要包含`MPU6050.h`头文件,然后创建`MPU6050`对象,并调用`begin()`函数初始化传感器。之后,可以通过循环调用`getAcceleration()`和`getGyroscope()`来不断更新传感器读数。为了处理这些原始数据,通常还需要进行校准和滤波,以消除噪声和漂移。 I2C通信协议是MPU6050与Arduino交互的基础,它是一种低引脚数的串行通信协议,允许多个设备共享一对数据线。Arduino板上的Wire库提供了I2C通信的底层支持,使得用户无需深入了解通信细节,就能方便地与MPU6050交互。 MPU6050传感器的数据包括加速度(X、Y、Z轴)和角速度(同样为X、Y、Z轴)。加速度数据可以用来计算物体的静态位置和动态运动,而角速度数据则能反映物体转动的速度。结合这两个数据,可以进一步计算出物体的姿态(如角度和角速度变化)。 在嵌入式开发领域,特别是使用STM32微控制器时,也可以找到类似的库来驱动MPU6050。STM32通常具有更强大的处理能力和更多的GPIO口,可以实现更复杂的控制算法。然而,基本的传感器操作流程和数据处理原理与Arduino平台相似。 在实际应用中,除了基本的传感器读取,还可能涉及到温度补偿、低功耗模式设置、DMP(数字运动处理器)功能的利用等高级特性。DMP可以帮助处理传感器数据,实现更高级的运动估计,减轻主控制器的计算负担。 MPU6050是一个强大的六轴传感器,广泛应用于各种需要实时运动追踪的项目中。通过 Arduino 或 STM32 的库文件,开发者可以轻松地与传感器交互,获取并处理数据,实现各种创新应用。博客和其他开源资源是学习和解决问题的重要途径,通过这些资源,开发者可以获得关于MPU6050的详细信息和实践指南
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值