terraform7cloud
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
19、理论机器:多种计算模型的逻辑描述
本文深入探讨了多种计算模型在二阶逻辑框架下的理论机器描述,涵盖图灵机、Type-2机、Blum-Shub-Smale机、量子计算机、流体计算机和无限时间图灵机。通过引入简单序列与X-字集等基础概念,系统阐述了各类机器的结构、演化规则与输入输出机制。文章展示了不同计算模型如何统一于理论机器框架下,揭示了计算的本质多样性,并为未来新型计算技术的发展提供了坚实的理论基础。原创 2025-10-23 09:19:58 · 21 阅读 · 0 评论 -
18、区间值计算、红绿图灵机与理论机器:探索计算新边界
本文探讨了区间值计算与红绿图灵机的模拟机制,提出了理论机器这一统一框架,用于描述从经典图灵机到量子计算机、流体计算机等多种物理与非物理计算系统。通过形式化定义逻辑系统的语义后果关系,理论机器以无时间性、整体一致的方式进行计算,适用于有限与无限问题,并分别等价于图灵机和Type-2机器。文章还分析了其在不同计算模型中的应用,比较了与其他抽象机的区别,并展望了其在光学技术、量子计算关联、数学可判定性及无限计算编码等方面的研究前景。原创 2025-10-22 15:12:41 · 30 阅读 · 0 评论 -
17、无限区间值计算序列与图灵机模拟
本文深入探讨了无限区间值计算序列在图灵机模拟中的应用,介绍了资源复杂度的衡量方式与接受条件的设定,展示了如何通过固定数量的区间值变量有效模拟普通图灵机和红-绿图灵机。文章分析了区间值的分辨率与位高度对计算能力的影响,并通过具体示例说明了二进制数字输出和图灵机配置表示的实现过程。同时讨论了该计算模型的优势与挑战,对比了其与传统及其他计算模型的异同,为计算理论的发展提供了新的视角和方法。原创 2025-10-21 10:08:34 · 22 阅读 · 0 评论 -
16、布尔自动机网络分解框架与区间值计算拓展
本文探讨了布尔自动机网络(BANs)的模块化分解框架,通过分析玩具BAN和裂变酵母细胞周期网络示例,揭示了复杂网络动态的结构化理解方式。同时,介绍了区间值计算的拓展,展示了其在模拟图灵机乃至红绿图灵机方面的强大能力,提出了一种仅用固定数量变量即可实现状态转换的精细等价性。文章还总结了该领域面临的开放问题,包括计算序列的标准化转换、计算能力边界刻画及实际应用拓展,为复杂系统分析和超越传统计算模型的研究提供了新路径。原创 2025-10-20 09:26:52 · 17 阅读 · 0 评论 -
15、布尔自动机网络的分解与组合框架
本文介绍了布尔自动机网络(BAN)的分解与组合框架,涵盖基础定义、模块结构、布线操作及模拟机制。通过定义模块与外部输入、非递归与递归布线,提出任意BAN均可通过子模块组装而成(定理1)。进一步,通过局部模拟布尔函数并采用输入优先更新模式,构建可全局模拟原BAN的新网络(定理2),并推导出可构造仅含析取子句或单调函数的模拟网络。文章还探讨了该理论在模块化扩展、更新模式影响及实际应用中的潜力,为BAN在计算系统建模中的应用提供理论支持。原创 2025-10-19 09:58:17 · 19 阅读 · 0 评论 -
14、实时多计数器自动机计数器的最小有用规模及布尔自动机网络的分解框架
本文探讨了实时多计数器自动机在识别非正则语言时所需的最小有用空间,分析了不同类型自动机(如非确定性、双向、确定性)在强/弱空间界限下的空间复杂度下界,并总结了相关理论的最优性。同时,文章介绍了布尔自动机网络(BANs)的分解框架,提出通过模块和布线的方式实现对复杂网络的动力学建模与模拟,尤其在生物学基因调控网络和计算机科学系统设计中的应用潜力。最后展望了未来在固定计数器规模下的空间优化及BAN模块化分解方法的研究方向。原创 2025-10-18 16:47:03 · 16 阅读 · 0 评论 -
13、实时多计数器自动机计数器的最小有用规模
本文研究了实时多计数器自动机在接受一元非正则语言时的最小有用空间界限。针对弱空间界限,证明了$(\log n)^{\varepsilon}$是接受一元非正则语言的最小可能界限,可通过增加计数器数量实现更低的空间消耗;对于强空间界限,得出$O(n^{\varepsilon})$为最小可能界限,并分别构建了实时非确定性和确定性自动机模型加以验证。同时通过反证法证明了低于这些界限将无法识别非正则语言。结果深化了对多计数器自动机空间复杂性的理解,为计算复杂性理论提供了重要参考。原创 2025-10-17 16:30:24 · 19 阅读 · 0 评论 -
12、简单半条件文法规则与非终结符的最小化研究
本文研究了简单半条件文法(SSCG)中规则与非终结符的最小化问题,重点分析了度数为(3,1)的SSCG如何以有限的规则和非终结符描述递归可枚举语言。通过定理证明与推导示例,展示了两种SSCG构造方法的有效性,并讨论了推导过程中的受阻情况。文章还总结了当前研究中存在的未解决问题,如(1,1)-SSCG的非终结符界限、SSCG与一般半条件文法的简洁性比较等,并介绍了相关的广义禁止文法和广义许可文法家族,为后续文法复杂度研究提供了方向。原创 2025-10-16 14:47:54 · 20 阅读 · 0 评论 -
11、简单半条件文法中规则和非终结符的最小化
本文研究了简单半条件文法(SSCG)中规则和非终结符的最小化问题,通过引入Geffert范式和分析规则应用顺序,证明了度为(2,1)的SSCG仅需9个非终结符和8个条件规则即可生成所有递归可枚举语言(RE),实现了计算完备性。文章详细展示了擦除规则ABC→λ的模拟过程,并探讨了规则推迟应用的条件、推导过程中的关键情况分析,以及最小化在理论与应用中的意义,最后提出了进一步优化的方向。原创 2025-10-15 09:01:13 · 17 阅读 · 0 评论 -
10、哈默斯利型过程语言、语法规则及相关常数估计研究
本文研究了哈默斯利型过程的语言与语法规则,证明了相关结构性质,并分析了算法ComputeMultiplicity的正确性及其在k1和k2时的递推行为。通过对F_2系列中增量分布的计算与模拟,支持了常数λ_2 1 + √5/2的推测。同时探讨了简单半条件语法(SSCG)在度(2,1)和(3,1)下的描述复杂度,优化了非终结符与条件规则的数量。文章还提出了关于形式幂级数F_k是否为N-有理或N-代数的开放问题,并指出未来将对c_k等常数进行深入研究。原创 2025-10-14 10:36:50 · 21 阅读 · 0 评论 -
9、哈默斯利型过程的语言与级数研究
本文研究了哈默斯利型过程在语言与级数方面的理论框架,定义了k元堆和堆可序列等基本概念,并将经典的乌拉姆-哈默斯利问题扩展到堆可子序列与随机区间场景。通过引入哈默斯利-奥尔德斯-迪亚科尼斯(HAD)过程及其整数版本,建立了与形式语言的联系。文章证明了相关语言类的性质,如$ L_k^H $为确定性单计数器语言但非正则,$ S_k $非上下文无关,并利用归纳法和自动机理论完成了关键定理的证明。最后提出了关于缩放常数$ \lambda_k $和$ c_k $的猜想,展望了形式幂级数分析及更广随机过程的拓展方向。原创 2025-10-13 13:50:05 · 18 阅读 · 0 评论 -
8、语法规则激活与阻塞及Hammersley类型过程的语言和级数研究
本文研究了顺序语法中规则的激活与阻塞机制及其在AB语法、图控制语法等模型中的等价性,证明了上下文无关语法仅需两个非终结符即可实现计算完备性。同时,通过形式语言与幂级数方法分析Hammersley类型过程(包括HADk和区间Hammersley过程),定义了Hammersley语言与k-主导单词,并给出了计算幂级数系数的动态规划算法。研究揭示了这些过程的语言结构性质,如正则性和确定性单计数器特性,并探讨了其在Ulam-Hammersley问题中的应用。成果对形式语言理论、复杂系统建模及跨学科算法设计具有重要意原创 2025-10-12 12:25:37 · 23 阅读 · 0 评论 -
7、规则激活与阻塞的顺序语法:原理与应用
本文系统介绍了多集语法、寄存器机、图控制语法、矩阵语法、随机上下文语法以及规则激活与阻塞语法(AB-语法)等多种形式语法的定义、推导机制与语言生成能力。重点分析了各类语法之间的包含与模拟关系,如矩阵语法与A1-语法的等价性、随机上下文语法可被AB-语法模拟、AB-语法可被图控制语法模拟等。通过实例和mermaid流程图直观展示了推导过程与语法控制机制,并总结了各语法在化学建模、编译器设计、自然语言处理、音乐生成等领域的应用场景。最后展望了语法融合、应用拓展与算法优化等未来研究方向。原创 2025-10-11 12:16:33 · 20 阅读 · 0 评论 -
6、分布式机器领域与顺序语法规则控制的探索
本文探讨了分布式机器中的随机化共识算法及其在拜占庭环境下的性能优化,同时深入研究了顺序语法规则的激活与阻塞机制。通过引入这些控制机制,上下文无关语法在字符串、多重集及数组等不同对象类型上均实现了计算完备性。文章还总结了相关领域的关键成果,并展望了未来在复杂网络环境优化和语法机制扩展应用方面的研究方向。原创 2025-10-10 13:49:26 · 19 阅读 · 0 评论 -
5、数组文法控制机制与分布式计算探索
本文深入探讨了数组文法的控制机制与分布式计算的核心概念。在数组文法方面,分析了不同控制机制对计算能力的影响,并展望了基于凯莱图、插入删除规则及P系统结构等新方向。在分布式计算方面,系统阐述了任务、并发对象、共识、不可区分性等基础概念,比较了并行与分布式计算的本质区别,并总结了绕过FLP不可能性的多种方法。文章最后提出了未来在理论深化与跨领域应用方面的研究方向,为相关领域的进一步发展提供了思路。原创 2025-10-09 16:44:37 · 18 阅读 · 0 评论 -
4、凯莱网格上数组文法的控制机制研究
本文研究了凯莱网格上数组文法的多种控制机制,重点分析了规则激活与阻塞的AB-文法及其与图控制文法、A-文法之间的模拟关系。通过构造等价文法和推导过程分析,证明了在不同类型控制机制下语言族的包含关系,特别是在带有陷阱规则的严格扩展类型中,图控制文法可被A-文法模拟。进一步探讨了编程数组文法与图控制数组文法的等价性,并得出核心结论:对于多种控制机制Y,L(C(G) - # - CFA - Y)等于L(C(G) - ARBA),表明仅规则顺序即可实现完全控制能力。研究成果揭示了不同文法控制机制在数组语言生成中的相原创 2025-10-08 11:18:36 · 22 阅读 · 0 评论 -
3、凯莱网格上阵列文法的控制机制解析
本文系统解析了凯莱网格上阵列文法的多种控制机制,涵盖阵列文法的基础转换思路及其在通用顺序文法框架下的建模。文章详细介绍了图控制、矩阵、随机上下文和有序文法的形式定义与推导过程,并通过mermaid流程图和表格直观展示其工作机制。进一步分析了各类控制机制之间的语言生成能力关系,揭示了在具有单位规则和陷阱规则条件下,不同类型文法在表达力上的包含与等价关系,为形式语言理论及阵列文法的研究提供了坚实的理论基础。原创 2025-10-07 13:10:28 · 18 阅读 · 0 评论 -
2、凯莱网格上数组文法的控制机制解析
本文系统探讨了凯莱网格上的数组文法及其控制机制,涵盖群与群表示、凯莱图结构、数组定义与性质、数组产生式类型及文法分类。重点分析了\#-上下文无关、上下文无关、严格上下文无关和任意规则等数组文法的特性与生成能力差异,并介绍了标记范式和k-连通数组的过滤算法。通过模拟图灵机计算过程,展示了数组文法在理论计算中的应用潜力,总结了不同类型文法在连通性与表达力方面的优劣,为后续研究提供了理论基础与技术工具。原创 2025-10-06 14:10:57 · 16 阅读 · 0 评论 -
1、2018 计算与通用性会议:前沿探索与成果展示
2018年6月,第8届机器、计算与通用性会议(MCU 2018)在法国枫丹白露举行,聚焦计算模型的前沿研究。会议探讨了图灵机、细胞自动机、分子计算等多种离散与连续计算模型中的通用性、可判定性与复杂度问题。重点议题包括最简通用系统、分布式计算的环境假设边界、阵列文法在Cayley网格上的控制机制,以及DNA自组装中的算法计算。会议接收七篇论文,并举办五场邀请报告,涵盖Watson-Crick L系统、形状计算、分布式理论与实验实现等方向,展示了计算理论从抽象模型到物理实现的广泛进展。原创 2025-10-05 10:45:21 · 30 阅读 · 0 评论
分享