Reeb graph



From Wikipedia, the free encyclopedia
Reeb graph of the height function on the torus.

Reeb graph (named after Georges Reeb) is a mathematical object reflecting the evolution of the level sets of a real-valued function on a manifold.[1] Originally introduced as a tool inMorse theory,[2] Reeb graphs found a wide variety of applications in computational geometry and computer graphics, including computer aided geometric designtopology-based shape matching,[3]topological simplification and cleaning, surface segmentation and parametrization, and efficient computation of level sets. In a special case of a function on a flat space, the Reeb graph forms a polytree and is also called a contour tree.[4]

Formal definition[edit]

Given a topological space X and a continuous function fX → R, define an equivalence relation ∼ on X where pq whenever p and q belong to the same connected component of a single level set f−1(c) for some real c. The Reeb graph is the quotient space X /∼ endowed with the quotient topology.

Description for Morse functions[edit]

If f is a Morse function with distinct critical values, the Reeb graph can be described more explicitly. Its nodes, or vertices, correspond to the critical level sets f−1(c). The pattern in which the arcs, or edges, meet at the nodes/vertices reflects the change in topology of the level set f−1(t) as t passes through the critical value c. For example, if c is a minimum or a maximum of f, a component is created or destroyed; consequently, an arc originates or terminates at the corresponding node, which has degree 1. If c is a saddle point of index 1 and two components of f−1(t) merge at t = c as t increases, the corresponding vertex of the Reeb graph has degree 3 and looks like the letter "Y"; the same reasoning applies if the index of c is dim X−1 and a component of f−1(c) splits into two.

References[edit]

  1. Jump up^ Harish Doraiswamy, Vijay Natarajan, Efficient algorithms for computing Reeb graphs, Computational Geometry 42 (2009) 606–616
  2. Jump up^ G. Reeb, Sur les points singuliers d’une forme de Pfaff complètement intégrable ou d’une fonction numérique, C. R. Acad. Sci. Paris 222 (1946) 847–849
  3. Jump up^ Tung, Tony; Schmitt, Francis (2005). "The Augmented Multiresolution Reeb Graph Approach for Content-Based Retrieval of 3D Shapes"International Journal of Shape Modeling (IJSM) 11 (1): 91–120.
  4. Jump up^ Carr, Hamish; Snoeyink, Jack; Axen, Ulrike (2000), "Computing contour trees in all dimensions", Proc. 11th ACM-SIAM Symposium on Discrete Algorithms (SODA 2000), pp. 918–926.
From Wikipedia, the free encyclopedia
Reeb graph of the height function on the torus.

Reeb graph (named after Georges Reeb) is a mathematical object reflecting the evolution of the level sets of a real-valued function on a manifold.[1] Originally introduced as a tool inMorse theory,[2] Reeb graphs found a wide variety of applications in computational geometry and computer graphics, including computer aided geometric designtopology-based shape matching,[3]topological simplification and cleaning, surface segmentation and parametrization, and efficient computation of level sets. In a special case of a function on a flat space, the Reeb graph forms a polytree and is also called a contour tree.[4]

Formal definition[edit]

Given a topological space X and a continuous function fX → R, define an equivalence relation ∼ on X where pq whenever p and q belong to the same connected component of a single level set f−1(c) for some real c. The Reeb graph is the quotient space X /∼ endowed with the quotient topology.

Description for Morse functions[edit]

If f is a Morse function with distinct critical values, the Reeb graph can be described more explicitly. Its nodes, or vertices, correspond to the critical level sets f−1(c). The pattern in which the arcs, or edges, meet at the nodes/vertices reflects the change in topology of the level set f−1(t) as t passes through the critical value c. For example, if c is a minimum or a maximum of f, a component is created or destroyed; consequently, an arc originates or terminates at the corresponding node, which has degree 1. If c is a saddle point of index 1 and two components of f−1(t) merge at t = c as t increases, the corresponding vertex of the Reeb graph has degree 3 and looks like the letter "Y"; the same reasoning applies if the index of c is dim X−1 and a component of f−1(c) splits into two.

References[edit]

  1. Jump up^ Harish Doraiswamy, Vijay Natarajan, Efficient algorithms for computing Reeb graphs, Computational Geometry 42 (2009) 606–616
  2. Jump up^ G. Reeb, Sur les points singuliers d’une forme de Pfaff complètement intégrable ou d’une fonction numérique, C. R. Acad. Sci. Paris 222 (1946) 847–849
  3. Jump up^ Tung, Tony; Schmitt, Francis (2005). "The Augmented Multiresolution Reeb Graph Approach for Content-Based Retrieval of 3D Shapes"International Journal of Shape Modeling (IJSM) 11 (1): 91–120.
  4. Jump up^ Carr, Hamish; Snoeyink, Jack; Axen, Ulrike (2000), "Computing contour trees in all dimensions", Proc. 11th ACM-SIAM Symposium on Discrete Algorithms (SODA 2000), pp. 918–926.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值