[二分+曼哈顿距离] 51Nod1671 货物运输

本文介绍了一种利用二分查找结合曼哈顿距离解决特定问题的方法。通过二分答案并验证可行性,最终确定最优解。文章详细展示了算法的具体实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

就是先二分答案,然后考虑如何验证。
满足 biaimid 的点就不用管了,设传送点建在X,Y, 则剩下的点需要满足:

|Xai|+|Ybi|mid

这是如果我们发现考虑枚举一个端点什么的,很难搞。可以转化一下,注意上面的约束是一个曼哈顿距离的形式,也就是说把 (X,Y)(ai,aj) 看成点,然后只需要求一些全等的正方形是否有交就行了。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define Fir first
#define Sec second
#define mp(x,y) make_pair(x,y)
using namespace std;
const int maxn=500005;
int n,m,mid,ans;
pair<int,int> a[maxn];

bool check(){
    int t1=1e9,t2=-1e9,t3=1e9,t4=-1e9;
    for(int i=1;i<=m;i++) if(a[i].Sec-a[i].Fir>mid){
        t1=min(t1,a[i].Fir+a[i].Sec+mid);
        t2=max(t2,a[i].Fir+a[i].Sec-mid);
        t3=min(t3,a[i].Sec-a[i].Fir+mid);
        t4=max(t3,a[i].Sec-a[i].Fir-mid);
    }
    return t2<=t1&&t4<=t3;
}
int main(){
    freopen("51nod1671.in","r",stdin);
    freopen("51nod1671.out","w",stdout);
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++){
        scanf("%d%d",&a[i].Fir,&a[i].Sec);
        if(a[i].Fir>a[i].Sec) swap(a[i].Fir,a[i].Sec);
        if(a[i].Fir==a[i].Sec) i--,m--;
    }
    if(!m) return printf("0"),0;
    int L=1,R=1000000;
    while(L<=R){
        mid=(L+R)>>1;
        if(check()) R=mid-1, ans=mid;
               else L=mid+1; 
    }
    printf("%d\n",ans);
    return 0;
} 
### 关于51Nod 3100 上台阶问题的C++解法 #### 题目解析 该题目通常涉及斐波那契数列的应用。假设每次可以走一步或者两步,那么到达第 \( n \) 层台阶的方法总数等于到达第 \( n-1 \) 层和第 \( n-2 \) 层方法数之和。 此逻辑可以通过动态规划来解决,并且为了防止数值过大,需要对结果取模操作(如 \( \% 100003 \)[^1])。以下是基于上述思路的一个高效实现: ```cpp #include <iostream> using namespace std; const int MOD = 100003; long long f[100010]; int main() { int n; cin >> n; // 初始化前两项 f[0] = 1; // 到达第0层有1种方式(不移动) f[1] = 1; // 到达第1层只有1种方式 // 动态规划计算f[i] for (int i = 2; i <= n; ++i) { f[i] = (f[i - 1] + f[i - 2]) % MOD; } cout << f[n] << endl; return 0; } ``` 以上代码通过数组 `f` 存储每层台阶的结果,利用循环逐步填充至目标层数 \( n \),并最终输出结果。 --- #### 时间复杂度分析 由于仅需一次线性遍历即可完成所有状态转移,时间复杂度为 \( O(n) \)。空间复杂度同样为 \( O(n) \),但如果优化存储,则可进一步降低到 \( O(1) \): ```cpp #include <iostream> using namespace std; const int MOD = 100003; int main() { int n; cin >> n; long long prev2 = 1, prev1 = 1, current; if (n == 0 || n == 1) { cout << 1 << endl; return 0; } for (int i = 2; i <= n; ++i) { current = (prev1 + prev2) % MOD; prev2 = prev1; prev1 = current; } cout << prev1 << endl; return 0; } ``` 在此版本中,只保留最近两个状态变量 (`prev1`, `prev2`) 来更新当前值,从而节省内存开销。 --- #### 输入输出说明 输入部分接受单个整数 \( n \),表示台阶数量;程序会返回从地面走到第 \( n \) 层的不同路径数目,结果经过指定模运算处理以适应大范围数据需求。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值