【背包+阈值优化】51Nod 1597 有限背包计数问题

本文探讨了51Nod 1597题目的解决方案,重点在于如何利用背包问题的思路和阈值优化技术。文章指出,对于数值小于n平方根的物品,可以使用前缀和来简化计算;而对于大于n平方根的物品,重新定义问题为选择i个物品且背包容量为j,便于状态转移。文中提供了示例程序以展示具体实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题面在这里

显然,对于小于 n 的物品可以直接对每个背包大小记前缀和

对于大于 n 的物品直接改定义为“选了i个物品,背包大小为j”即可

很好转移吧……

示例程序:

#include<cstdio>
#include<cmath>
#include<cstring>
typedef long long ll;

const int maxn=100005,maxs=320,tt=23333333;
int n,s,f[2][maxn],g[2][maxn],tem[maxn];
inline void Madd(int &x,int y) {if ((x+=y)>=tt) x-=tt;}
int main(){
    scanf("%d",&n);s=sqrt(n);
    f[0][0]=1;
    for (int i=1;i<=s;i++){
        memset(tem,0,sizeof(tem));
        for (int j=0;j<=n;j++){
            Madd(tem[j%i],f[i&1^1][j]);
            f[i&1][j]=tem[j%i];
            if (j-i*i>=0) Madd(tem[j%i],tt-f[i&1^1][j-i*i]);
        }
    }
    g[0][0]=1;int ans=f[s&1][n];
    for (int i=1;i<=s;i++){
        for (int j=0;j<i;j++) g[i&1][j]=0;
        for (int j=i;j<=n;j++){
            g[i&1][j]=g[i&1][j-i];
            if (j>s) Madd(g[i&1][j],g[i&1^1][j-s-1]);
            Madd(ans,(ll)g[i&1][j]*f[s&1][n-j]%tt);
        }
    }
    printf("%d",ans);
    return 0;
}
### 关于51Nod 3100 上台阶问题的C++解法 #### 题目解析 该题目通常涉及斐波那契数列的应用。假设每次可以走一步或者两步,那么到达第 \( n \) 层台阶的方法总数等于到达第 \( n-1 \) 层和第 \( n-2 \) 层方法数之和。 此逻辑可以通过动态规划来解决,并且为了防止数值过大,需要对结果取模操作(如 \( \% 100003 \)[^1])。以下是基于上述思路的一个高效实现: ```cpp #include <iostream> using namespace std; const int MOD = 100003; long long f[100010]; int main() { int n; cin >> n; // 初始化前两项 f[0] = 1; // 到达第0层有1种方式(不移动) f[1] = 1; // 到达第1层只有1种方式 // 动态规划计算f[i] for (int i = 2; i <= n; ++i) { f[i] = (f[i - 1] + f[i - 2]) % MOD; } cout << f[n] << endl; return 0; } ``` 以上代码通过数组 `f` 存储每层台阶的结果,利用循环逐步填充至目标层数 \( n \),并最终输出结果。 --- #### 时间复杂度分析 由于仅需一次线性遍历即可完成所有状态转移,时间复杂度为 \( O(n) \)。空间复杂度同样为 \( O(n) \),但如果优化存储,则可进一步降低到 \( O(1) \): ```cpp #include <iostream> using namespace std; const int MOD = 100003; int main() { int n; cin >> n; long long prev2 = 1, prev1 = 1, current; if (n == 0 || n == 1) { cout << 1 << endl; return 0; } for (int i = 2; i <= n; ++i) { current = (prev1 + prev2) % MOD; prev2 = prev1; prev1 = current; } cout << prev1 << endl; return 0; } ``` 在此版本中,只保留最近两个状态变量 (`prev1`, `prev2`) 来更新当前值,从而节省内存开销。 --- #### 输入输出说明 输入部分接受单个整数 \( n \),表示台阶数量;程序会返回从地面走到第 \( n \) 层的不同路径数目,结果经过指定模运算处理以适应大范围数据需求。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值