Description
求
∑i=ab1n∑j=1ilcm(i,j)∑i=ab1n∑j=1ilcm(i,j)
Solution
明天回家,现在有点浑浑噩噩
终于推出了与题解一致的柿子,so moved
照例推柿子,区间可以变成前缀和之差,枚举gcd
ans=∑d=1b∑i=1⌊bd⌋∑j=1ij⋅[gcd(i,j)=1]ans=∑d=1b∑i=1⌊bd⌋∑j=1ij⋅[gcd(i,j)=1]
然后后面这一坨实际上就是∑ni=1i⋅[gcd(n,i)=1]=φ(n)⋅n2∑i=1ni⋅[gcd(n,i)=1]=φ(n)⋅n2的应用,带进去就得到
ans=∑d=1b∑i=1⌊bd⌋φ(i)⋅i2ans=∑d=1b∑i=1⌊bd⌋φ(i)⋅i2
需要注意的是当i=1的时候后面的贡献应当是1但是柿子体现不出来,需要我们单独加上去。这个和除二一起先不管
令S(n)=sumni=1φ(i)⋅iS(n)=sumi=1nφ(i)⋅i,那么
ans=b+12∑d=1bS(⌊bd⌋)ans=b+12∑d=1bS(⌊bd⌋)
然后问题就变成了怎么求S(n)S(n),这个是非常经典的杜教筛问题我就不写了
Code
#include <stdio.h>
#include <string.h>
#include <map>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)
typedef long long LL;
const int MOD=1000000007;
const int N=10000005;
std:: map <LL,LL> map;
int prime[N/10];
LL f[N+5],ny6,ny2;
bool not_prime[N+5];
void pre_work(int n) {
f[1]=1;
rep(i,2,n) {
if (!not_prime[i]) {
prime[++prime[0]]=i;
f[i]=(i-1);
}
for (int j=1;i*prime[j]<=n&&j<=prime[0];j++) {
not_prime[i*prime[j]]=1;
if (i%prime[j]==0) {
f[i*prime[j]]=f[i]*prime[j]%MOD;
break;
}
f[i*prime[j]]=f[i]*(prime[j]-1)%MOD;
}
}// f[0]=1;
rep(i,1,n) f[i]=(f[i-1]+f[i]*(LL)i%MOD)%MOD;
}
LL ksm(LL x,LL dep) {
LL ret=1;
while (dep) {
if (dep&1) ret=ret*x%MOD;
x=x*x%MOD; dep/=2;
}
return ret;
}
LL get_f(LL n) {
if (n<=N) return f[n];
if (map[n]) return map[n];
LL ret=n*(n+1)%MOD*(2*n%MOD+1)%MOD*ny6%MOD;
for (LL i=2,j;i<=n;i=j+1) {
j=n/(n/i);
LL tmp=(j*(j+1)%MOD-(i-1)*i%MOD+MOD)%MOD*ny2%MOD;
ret=(ret+MOD-tmp*get_f(n/i)%MOD)%MOD;
}
ret=(ret%MOD+MOD)%MOD;
return map[n]=ret;
}
LL solve(LL n) {
if (n==0) return 0;
LL ret=0;
for (LL i=1,j;i<=n;i=j+1) {
j=n/(n/i);
ret=(ret+(j-i+1)*get_f(n/i)%MOD)%MOD;
}
ret=(ret+n)%MOD;
ret=ret*ny2%MOD;
return ret;
}
int main(void) {
ny2=ksm(2,MOD-2);
ny6=ksm(6,MOD-2);
pre_work(N);
LL a,b; scanf("%lld%lld",&a,&b);
LL ans=solve(b);
ans=ans-solve(a-1);
ans=(ans%MOD+MOD)%MOD;
printf("%lld\n", ans);
return 0;
}