Description
给定一个正整数n<=231−1n<=231−1,求∑ni=1μ(i)∑i=1nμ(i)和∑ni=1φ(i)∑i=1nφ(i),多组询问
Solution
杜教筛裸题
先考虑μ的前缀和怎么求。我们知道∑i|nμ(i)=[n==1]∑i|nμ(i)=[n==1],那么不妨设S(n)=∑ni=1μ(i)S(n)=∑i=1nμ(i),有∑ni=1∑d|iμ(d)=∑ni=1∑d|iμ(id)=∑nd=1∑⌊nd⌋i=1μ(i)=∑nd=1S(⌊nd⌋)=1∑i=1n∑d|iμ(d)=∑i=1n∑d|iμ(id)=∑d=1n∑i=1⌊nd⌋μ(i)=∑d=1nS(⌊nd⌋)=1
观察一下式子,发现当d=1时n/d=n,那么单独拉出来得到S(n)=1−∑nd=2S(⌊nd⌋)S(n)=1−∑d=2nS(⌊nd⌋),显然这可以根号跳着做,一部分前缀和用线性筛,剩下的递推做即可
Code
#include <stdio.h>
#include <map>
typedef long long LL;
const int N=5000000;
std:: map<LL,LL>s1,s2;
bool not_prime[N+5];
LL phi[N+5],mu[N+5];
int prime[N+5];
void init() {
phi[1]=mu[1]=1;
for (int i=2;i<=N;i++) {
if (!not_prime[i]) {
prime[++prime[0]]=i;
phi[i]=i-1;
mu[i]=-1;
}
for (int j=1;i*prime[j]<=N&&j<=prime[0];j++) {
not_prime[i*prime[j]]=1;
if (i%prime[j]==0) {
phi[i*prime[j]]=phi[i]*prime[j];
mu[i*prime[j]]=0;
break;
}
phi[i*prime[j]]=phi[i]*phi[prime[j]];
mu[i*prime[j]]=-mu[i];
}
}
for (int i=1;i<=N;i++) phi[i]+=phi[i-1];
for (int i=1;i<=N;i++) mu[i]+=mu[i-1];
}
LL get_mu(LL n) {
if (n<=N) return mu[n];
if (s1.count(n)) return s1[n];
LL ret=1;
for (LL i=2,j;i<=n;i=j+1) {
j=n/(n/i);
ret-=(j-i+1)*get_mu(n/i);
}
s1[n]=ret;
return ret;
}
LL get_phi(LL n) {
if (n<=N) return phi[n];
if (s2.count(n)) return s2[n];
LL ret=(n+1)*n/2;
for (LL i=2,j;i<=n;i=j+1) {
j=n/(n/i);
ret-=(j-i+1)*get_phi(n/i);
}
s2[n]=ret;
return ret;
}
int main(void) {
init();
int T; scanf("%d",&T);
while (T--) {
LL x; scanf("%lld",&x);
printf("%lld %lld\n", get_phi(x),get_mu(x));
}
return 0;
}

553

被折叠的 条评论
为什么被折叠?



