半平面交学习小记

其实只是记一个板子(lll¬ω¬)

Description


内核是多边形内的一个点集,点集内任意一点与多边形边上任意一点的连线都在多边形内。你可以把多边形想成一个房间,在内核内任意一个点放上一个全方位360度无死角的摄像机,这个摄像机能够看到房间的任意角落。
现在给出一个n边形的所有顶点,求是否存在核

Solution


poj喜闻乐见地挂了,例题不知道过了没
可以发现这个核就是以边作为若干半平面的交。极角排序之后用双端队列可以做到nlogn维护半平面交,这里面涉及一些比较显然但是我不太会的计算几何姿势,板子是抄来的

这里直线用的是点+方向向量的表示,半平面规定为方向向量的左侧,直线求交有一些巧妙的做法

Code


#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <math.h>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)

const int N=20005;
const double eps=1e-5;

struct Point {
	double x,y;
	Point() {}
	Point(double X,double Y) {x=X,y=Y;}
	Point operator +(const Point &B) const {
		return (Point) {x+B.x,y+B.y};
	}
	Point operator -(const Point &B) const {
		return (Point) {x-B.x,y-B.y};
	}
	Point operator *(const double &b) const {
		return (Point) {x*b,y*b};
	}
	Point operator /(const double &b) const {
		return (Point) {x*b,y*b};
	}
	bool operator <(const Point &B) const {
		return (x<B.x)||(fabs(x-B.x)<=eps&&y<B.y);
	}
} p[N],a[N];

typedef Point Vector;

struct Line {
	Point p; Vector v;
	double ang;
	Line() {}
	Line(Point P,Vector V) {
		p=P,v=V; ang=atan2(v.y,v.x);
	}
	bool operator <(const Line &L) const {
		return ang<L.ang;
	}
} L[N],q[N];

double cros(const Point &A,const Point &B) {
	return (B.y*A.x-B.x*A.y);
}

bool onLeft(const Point &A,const Line &B) {
	return cros(B.v,A-B.p)>0;
}

Point inte(const Line &A,const Line &B) {
	Vector v=A.p-B.p;
	double tmp=cros(B.v,v)/cros(A.v,B.v);
	return A.p+A.v*tmp;
}

bool solve(int n) {
	std:: sort(L,L+n);
	int head=0,tail=0;
	q[head]=L[0];
	rep(i,1,n-1) {
		while (head<tail&&onLeft(p[tail-1],L[i])==0) tail--;
		while (head<tail&&onLeft(p[head],L[i])==0) head++;
		q[++tail]=L[i];
		if (fabs(cros(q[tail].v,q[tail-1].v))<=eps) {
			tail--;
			if (onLeft(L[i].p,q[tail])) q[tail]=L[i];
		}
		if (head<tail) p[tail-1]=inte(q[tail-1],q[tail]);
	}
	while (head<tail&&onLeft(p[tail-1],q[head])==0) tail--;
	return (tail-head>=2);
}

int main(void) {
	freopen("data.in","r",stdin);
	int n; scanf("%d",&n);
	for (;n;scanf("%d",&n)) {
		rep(i,0,n-1) scanf("%lf%lf",&a[i].x,&a[i].y);
		L[0]=Line(a[n-1],a[0]-a[n-1]);
		rep(i,1,n-1) L[i]=Line(a[i],a[i]-a[i-1]);
		printf("%d\n", solve(n));
	}
	return 0;
}
计及风电并网运行的微电网及集群电动汽车综合需求侧响应的优化调度策略研究(Matlab代码实现)内容概要:本文研究了计及风电并网运行的微电网及集群电动汽车综合需求侧响应的优化调度策略,并提供了基于Matlab的代码实现。研究聚焦于在高渗透率可再生能源接入背景下,如何协调微电网内部分布式电源、储能系统与大规模电动汽车充电负荷之间的互动关系,通过引入需求侧响应机制,建立多目标优化调度模型,实现系统运行成本最小化、可再生能源消纳最大化以及电网负荷曲线的削峰填谷。文中详细阐述了风电出力不确定性处理、电动汽车集群充放电行为建模、电价型与激励型需求响应机制设计以及优化求解算法的应用。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事新能源、微电网、电动汽车等领域技术研发的工程师。; 使用场景及目标:①用于复现相关硕士论文研究成果,深入理解含高比例风电的微电网优化调度建模方法;②为开展电动汽车参与电网互动(V2G)、需求侧响应等课题提供仿真台和技术参考;③适用于电力系统优化、能源互联网、综合能源系统等相关领域的教学与科研项目开发。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注模型构建逻辑与算法实现细节,同时可参考文档中提及的其他相关案例(如储能优化、负荷预测等),以拓宽研究视野并促进交叉创新。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值