51nod1584 加权约数和 莫比乌斯反演+线性筛

本文详细解析了一个涉及数论和组合数学的复杂算法问题,通过去除最大值运算,利用数论中的σ函数特性,以及通过分块优化和枚举技巧,最终实现了高效求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Solution


i=1nj=1nmax(i,j)σ(ij) ∑ i = 1 n ∑ j = 1 n max ( i , j ) ⋅ σ ( i ⋅ j )

Solution


写完了回头看发现还是比较套路的,第一次写八级题肥肠激动
首先考虑去掉max

ans=2i=1nj=1iiσ(ij)i=1niσ(i2) a n s = 2 ∑ i = 1 n ∑ j = 1 i i ⋅ σ ( i ⋅ j ) − ∑ i = 1 n i ⋅ σ ( i 2 )

我们知道 σ(nm)=i|nj|m[gcd(i,j)=1]njm σ ( n ⋅ m ) = ∑ i | n ∑ j | m [ g c d ( i , j ) = 1 ] n ⋅ j m
然后此处略去一波套路得到
=d=1nμ(d)d2i=1ndσ(i)ij=1iσ(j) = ∑ d = 1 n μ ( d ) ⋅ d 2 ∑ i = 1 ⌊ n d ⌋ σ ( i ) ⋅ i ∑ j = 1 i σ ( j )

这里就能用分块做了,然鹅根号的复杂度不足以跑过这题,考虑接着推
T=id T = i d ,可以得到
=T=1nd|Tμ(d)tTσ(Td)i=1Tdσ(i) = ∑ T = 1 n ∑ d | T μ ( d ) ⋅ t ⋅ T ⋅ σ ( T d ) ∑ i = 1 T d σ ( i )

大概就是介样,然后就可以枚举d然后nln预处理O(1)出解。注意不要忘了减去的那一部分

Code


#include <stdio.h>
#include <string.h>
#include <algorithm>
#define rep(i,st,ed) for (register LL i=st;i<=ed;++i)

typedef long long LL;
const int MOD=1000000007;
const int N=1000005;

LL low[N+5],d[N+5],dd[N+5],mu[N+5];
LL ans[N+5],s[N+5],tmp[N+5];
LL prime[N/5];

bool not_prime[N+5];

int read() {
    int x=0,v=1; char ch=getchar();
    for (;ch<'0'||ch>'9';v=(ch=='-')?(-1):(v),ch=getchar());
    for (;ch<='9'&&ch>='0';x=x*10+ch-'0',ch=getchar());
    return x*v;
}

void add(LL &x,LL v) {
    x+=v; x-=(x>=MOD)?(MOD):(0);
}

void pre_work(int n) {
    dd[1]=d[1]=mu[1]=1;
    rep(i,2,n) {
        if (!not_prime[i]) {
            prime[++prime[0]]=i;
            mu[i]=-1; d[i]=i+1;
            low[i]=i; dd[i]=(i*i%MOD+i+1)%MOD;
        }
        for (int j=1;i*prime[j]<=n&&j<=prime[0];++j) {
            int x=i*prime[j];
            not_prime[x]=1;
            if (i%prime[j]==0) {
                mu[x]=0;
                low[x]=low[i]*prime[j];
                d[x]=(d[i]*prime[j]%MOD+d[i/low[i]])%MOD;
                dd[x]=(dd[i]*prime[j]%MOD*prime[j]%MOD+dd[i/low[i]]*prime[j]%MOD+dd[i/low[i]])%MOD;
                break;
            }
            low[x]=prime[j];
            d[x]=d[i]*d[prime[j]]%MOD;
            dd[x]=dd[i]*dd[prime[j]]%MOD;
            mu[x]=-mu[i];
        }
    }
    rep(i,1,n) s[i]=(s[i-1]+d[i])%MOD;
    for (LL i=1;i<=n;i++) {
        for (LL j=i;j<=n;j+=i) {
            LL tmp=mu[i]*i%MOD*j%MOD*d[j/i]%MOD*s[j/i]%MOD;
            add(ans[j],tmp);
        }
    }
    rep(i,1,n) add(ans[i],ans[i-1]);
    rep(i,1,n) add(tmp[i],(tmp[i-1]+i*dd[i]%MOD)%MOD);
}

int main(void) {
    freopen("data.in","r",stdin);
    freopen("myp.out","w",stdout);
    pre_work(1000000);
    for (int T=read(),n,cnt=0;T--;) {
        n=read();
        LL prt=(ans[n]*2%MOD-tmp[n]+MOD)%MOD;
        prt=(prt+MOD)%MOD;
        printf("Case #%d: %lld\n", ++cnt, prt);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值