前置知识:
不难发现,原来的:
∑ i = 1 n ∑ j = 1 n lcm ( i , j ) \sum_{i=1}^n \sum_{j=1}^n \operatorname{lcm}(i,j) i=1∑nj=1∑nlcm(i,j)
变成了:
∑ i = 1 n ∑ j = 1 n lcm ( a i , a j ) \sum_{i=1}^n \sum_{j=1}^n \operatorname{lcm}(a_i , a_j) i=1∑nj=1∑nlcm(ai,aj)
一言不合就开始推式子。
考虑用 c i c_i ci 表示 i i i 出现的次数,然后:
∑ i = 1 n ∑ j = 1 n lcm ( a i , a j ) = ∑ i = 1 n ∑ j = 1 n lcm ( i , j ) × c i × c j = ∑ i = 1 n ∑ j = 1 n i × j × c i × c j gcd ( i , j ) = ∑ d = 1 n ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ n d ⌋ [ gcd ( i , j ) = 1 ] d × i × j × c i d × c j d = ∑ d = 1 n ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ n d ⌋ ∑ k ∣ gcd ( i , j ) μ ( k ) × d × i × j × c i d × c j d =