导数的计算
基本概念
求导公式
14个求导公式
1.(C)′=0
1.\qquad{\left ( C \right )}' =0
1.(C)′=0
2.(xa)′=axa−1
2.\qquad{\left( x^{a} \right)}'=ax^{a-1}
2.(xa)′=axa−1
3.(ex)′=ex
3.\qquad{\left( e^{x} \right)}'=e^{x}
3.(ex)′=ex
4.(lnx)′=1x
4.\qquad{\left(\ln x \right)}'=\frac{1}{x}
4.(lnx)′=x1
5.(sinx)′=cosx正弦的导数等于余弦
5.\qquad
\begin{array}{}
(\sin x)'=\cos x\\
正弦的导数等于余弦
\end{array}
5.(sinx)′=cosx正弦的导数等于余弦
6.(cosx)′=−sinx余弦的导数等于负的正弦
6.\qquad
\begin{array}{}
(\cos x)'=-\sin x\\
余弦的导数等于负的正弦
\end{array}
6.(cosx)′=−sinx余弦的导数等于负的正弦
7.(tanx)′=sec2x正切的导数等于正割的平方
7.\qquad
\begin{array}{}
(\tan x)'=\sec^2x\\
正切的导数等于正割的平方
\end{array}
7.(tanx)′=sec2x正切的导数等于正割的平方
8.(cotx)′=−csc2x余切的导数等于负的余割的平方
8.\qquad
\begin{array}{}
(\cot x)'=-\csc^2x\\余切的导数等于负的余割的平方
\end{array}
8.(cotx)′=−csc2x余切的导数等于负的余割的平方
9.(secx)′=secxtanx正割的导数等于正割乘正切
9.\qquad
\begin{array}{}
(\sec x)'=\sec x\tan x\\正割的导数等于正割乘正切
\end{array}
9.(secx)′=secxtanx正割的导数等于正割乘正切
10.(cscx)′=−cscxcotx余割的导数负的余割乘余切
10.\qquad
\begin{array}{}
(\csc x)'=-\csc x\cot x\\余割的导数负的余割乘余切
\end{array}
10.(cscx)′=−cscxcotx余割的导数负的余割乘余切
11.(arctanx)′=11+x2
11.\qquad(\arctan x)'=\frac{1}{1+x^2}
11.(arctanx)′=1+x21
tana=xarctanx=a(arctanx)′=12(1+x2)2=11+x2
\begin{array}{}
\tan a=x\\arc\tan x=a\\(\arctan x)'=\frac{1^2}{(\sqrt{ 1+x^2 })^2}=\frac{1}{1+x^2}
\end{array}
tana=xarctanx=a(arctanx)′=(1+x2)212=1+x21
![![[Pasted image 20240305151556.png]]](https://i-blog.csdnimg.cn/blog_migrate/353357ea6ffea7c8424e407d054fabfe.png#pic_center)
12.(arccotx)′=−11+x2
12.\qquad(arccot x)'=-\frac{1}{1+x^2}
12.(arccotx)′=−1+x21
13.(arcsinx)′=11−x2
13.\qquad(\arcsin x)'=\frac{1}{\sqrt{ 1-x^2 }}
13.(arcsinx)′=1−x21
14.(arccosx)′=−11−x2
14.\qquad(\arccos x)'=-\frac{1}{\sqrt{ 1-x^2 }}
14.(arccosx)′=−1−x21
15.(ax)′=ax⋅lna
15.\qquad(a^x)'=a^x\cdot \ln a
15.(ax)′=ax⋅lna
16.(logax)′=1xlna
16.\qquad(\log_{a}^{x})'=\frac{1}{x\ln a}
16.(logax)′=xlna1
公式要求
1. 记忆
2. 推导
1. 基本求导公式 用极限推导
2. 拓展求导公式 用求导法则推导
3. 倒背如流 为求积分服务
(常)'=0
(幂)'=幂
(指)'=指
(对)'=幂
(三角)'=三角
(反三角)'=幂
求导法则
所有的函数都能由基本的初等函数通过三种运算法则泛化而成
四则运算法则
设函数f(x)f(x)f(x)与g(x)g(x)g(x)均可导,则
KaTeX parse error: Undefined control sequence: \displaylines at position 2: \̲d̲i̲s̲p̲l̲a̲y̲l̲i̲n̲e̲s̲{ [f(x)\pm g(x)…
推导公式
1.(tanx)′=(sinxcosx)′=(sinx)′cosx−sinx(cosx)′cos2x=cosx⋅cosx−sinx⋅(−sinx)cosx⋅cosx=cos2x+sin2xcos2x=1cos2x=sec2x
1.\qquad
\begin{array}{}
(\tan x)^{\prime}=\left(\frac{\sin x}{\cos x}\right)^{\prime}=\frac{(\sin x)^{\prime} \cos x-\sin x(\cos x)^{\prime}}{\cos ^{2} x} \\
=\frac{\cos x \cdot \cos x-\sin x \cdot(-\sin x)}{\cos x \cdot \cos x} \\
=\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}=\sec ^{2} x \\
\end{array}
1.(tanx)′=(cosxsinx)′=cos2x(sinx)′cosx−sinx(cosx)′=cosx⋅cosxcosx⋅cosx−sinx⋅(−sinx)=cos2xcos2x+sin2x=cos2x1=sec2x
2.(cotx)′=(cosxsinx)′=(cosx)′sinx−cosx(sinx)′sin2x=−sinx⋅sinx−cosx⋅(cosx)sinx⋅sinx=−sin2x−cos2xsin2x=−1sin2x=−csc2x
2.\qquad
\begin{array}{}
(\cot x)^{\prime}=\left(\frac{\cos x}{\sin x}\right)^{\prime}=\frac{(\cos x)^{\prime} \sin x-\cos x(\sin x)^{\prime}}{\sin ^{2} x} \\
=\frac{-\sin x \cdot \sin x-\cos x \cdot(\cos x)}{\sin x \cdot \sin x} \\
=\frac{-\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x}=-\frac{1}{\sin ^{2} x}=-\csc ^{2} x \\
\end{array}
2.(cotx)′=(sinxcosx)′=sin2x(cosx)′sinx−cosx(sinx)′=sinx⋅sinx−sinx⋅sinx−cosx⋅(cosx)=sin2x−sin2x−cos2x=−sin2x1=−csc2x
3.(secx)′=(1cosx)′=(1)′⋅cosx−1⋅(cosx)′cos2x=0⋅cosx−1⋅(−sinx)cosx⋅cosx=sinxcos2x=sinxcosx1cosx=secx⋅tanx
3.\qquad
\begin{array}{}
(\sec x)^{\prime}=\left(\frac{1}{\cos x}\right)^{\prime}=\frac{(1)^{\prime} \cdot \cos x-1 \cdot(\cos x)^{\prime}}{\cos ^{2} x} \\
=\frac{0 \cdot \cos x-1 \cdot(-\sin x)}{\cos x \cdot \cos x} \\
=\frac{\sin x}{\cos ^{2} x}=\frac{\sin x}{\cos x} \frac{1}{\cos x}=\sec x \cdot \tan x \\
\end{array}
3.(secx)′=(cosx1)′=cos2x(1)′⋅cosx−1⋅(cosx)′=cosx⋅cosx0⋅cosx−1⋅(−sinx)=cos2xsinx=cosxsinxcosx1=secx⋅tanx
4.(cscx)′=(1sinx)′=(1)′⋅sinx−1⋅(sinx)′sin2x=0⋅sinx−1⋅(cosx)sinx⋅sinx=−cosxsin2x=−cosxsinx1sinx=−cscx⋅cotx
4.\qquad
\begin{array}{}
(\csc x)^{\prime}=\left(\frac{1}{\sin x}\right)^{\prime}=\frac{(1)^{\prime} \cdot \sin x-1 \cdot(\sin x)^{\prime}}{\sin ^{2} x} \\
=\frac{0 \cdot \sin x-1 \cdot(\cos x)}{\sin x \cdot \sin x} \\
=\frac{-\cos x}{\sin ^{2} x}=-\frac{\cos x}{\sin x} \frac{1}{\sin x}=-\csc x \cdot \cot x \\
\end{array}
4.(cscx)′=(sinx1)′=sin2x(1)′⋅sinx−1⋅(sinx)′=sinx⋅sinx0⋅sinx−1⋅(cosx)=sin2x−cosx=−sinxcosxsinx1=−cscx⋅cotx
复合函数求导法则
定理:设y=f(u),u=g(x)y=f(u),u=g(x)y=f(u),u=g(x) ,如果g(x)g(x)g(x)在xxx处可导,且f(u)f(u)f(u)在对应的u=g(x)u=g(x)u=g(x)处可导,则复合函数y=f(g(x))y=f(g(x))y=f(g(x))在xxx处可导,且有:
[f(g(x))]′=f′(g(x))g′(x)或dydx=dydududx [f(g(x))]'=f'(g(x))g'(x)或\frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx} [f(g(x))]′=f′(g(x))g′(x)或dxdy=dudydxdu
分层
分层的依据是能出现在16个求导公式当中
外层求导内层不动,内层求导内内层不动,直至最内一层(16个中1个)
推导公式
elnf(x)=f(x)
e^{\ln f(x)}=f(x)
elnf(x)=f(x)
lna+lnb=lnab
\ln a+\ln b=\ln ab
lna+lnb=lnab
klna=lnak
k\ln a=\ln a^k
klna=lnak
(ax)′=(exlna)′=exlna⋅(xlna)′=exlna⋅lna=ax⋅lna
(a^x)'=(e^{x\ln a})'=e^{x\ln a}\cdot(x\ln a)'=e^{x\ln a}\cdot \ln a=a^x\cdot \ln a
(ax)′=(exlna)′=exlna⋅(xlna)′=exlna⋅lna=ax⋅lna
例1
f(x)=ln(x+1+x2)
f(x)=\ln(x+\sqrt{ 1+x^2 })
f(x)=ln(x+1+x2)
f′(x)=(x+1+x2)′x+1+x2=1+x1+x2x+1+x2=1+x2+x1+x2x+1+x2=11+x2
f'(x)=\frac{(x+\sqrt{ 1+x^2 })'}{x+\sqrt{ 1+x^2 }}=\frac{1+\frac{x}{\sqrt{ 1+x^2 }}}{x+\sqrt{ 1+x^2 }}=\frac{\frac{\sqrt{ 1+x^2 }+x}{\sqrt{ 1+x^2 }}}{x+\sqrt{ 1+x^2 }}=\frac{1}{\sqrt{ 1+x^2 }}
f′(x)=x+1+x2(x+1+x2)′=x+1+x21+1+x2x=x+1+x21+x21+x2+x=1+x21
(1+x2)′=((1+x2)12)′=12(1+x2)−12⋅(1+x2)′=12(1+x2)−12⋅2x=x1+x2
\begin{array}{}
(\sqrt{ 1+x^2 })'=((1+x^2)^{\frac{1}{2}})'=\frac{1}{2}(1+x^2)^{-\frac{1}{2}}\cdot(1+x^2)'\\
=\frac{1}{2}(1+x^2)^{-\frac{1}{2}}\cdot2x=\frac{x}{\sqrt{ 1+x^2 }}
\end{array}
(1+x2)′=((1+x2)21)′=21(1+x2)−21⋅(1+x2)′=21(1+x2)−21⋅2x=1+x2x
例2
f(x)=ln(cscx−cotx)(0<x<π2)
f(x)=\ln(\csc x-\cot x)(0<x<\frac{\pi}{2})
f(x)=ln(cscx−cotx)(0<x<2π)
f′(x)=(cscx−cotx)′cscx−cotx=−cscxcotx−(−csc2x)cscx−cotx=cscx(−cotx+cscx)cscx−cotx=cscx
\begin{array}{}
f'(x)=\frac{(\csc x-\cot x)'}{\csc x-\cot x}=\frac{-\csc x\cot x-(-\csc^2x)}{\csc x-\cot x}\\
=\frac{\csc x(-\cot x+\csc x)}{\csc x-\cot x}=\csc x
\end{array}
f′(x)=cscx−cotx(cscx−cotx)′=cscx−cotx−cscxcotx−(−csc2x)=cscx−cotxcscx(−cotx+cscx)=cscx
例3
f(x)=ln(secx−tanx)(0<x<π2)
f(x)=\ln(\sec x-\tan x)(0<x<\frac{\pi}{2})
f(x)=ln(secx−tanx)(0<x<2π)
f′(x)=(secx−tanx)′secx−tanx=−secxtanx−(−sec2x)secx−tanx=secx(−tanx+secx)secx−tanx=secx
\begin{array}{}
f'(x)=\frac{(\sec x-\tan x)'}{\sec x-\tan x}=\frac{-\sec x\tan x-(-\sec^2x)}{\sec x-\tan x}\\
=\frac{\sec x(-\tan x+\sec x)}{\sec x-\tan x}=\sec x
\end{array}
f′(x)=secx−tanx(secx−tanx)′=secx−tanx−secxtanx−(−sec2x)=secx−tanxsecx(−tanx+secx)=secx
反函数求导法则
取倒数
定理:设函数f(x)f(x)f(x)可导且f′(x)≠0f'(x)\ne0f′(x)=0,其反函数为x=f−1(y)x=f^{-1}(y)x=f−1(y),则
(f−1(y))′=dxdy=1dydx=1f′(x)=1f′(f−1(y)) (f^{-1}(y))'=\frac{dx}{dy}=\frac{1}{\frac{dy}{dx}}=\frac{1}{f'(x)}=\frac{1}{f'(f^{-1}(y))} (f−1(y))′=dydx=dxdy1=f′(x)1=f′(f−1(y))1
推导公式
(arcsinx)′=1(siny)′=1cosy=11−x2y=arcsinx原函数:x=sinycosy=1−sin2y=1−x2(arccosx)′=1(cosy)′=−1siny=−11−x2y=arccosx原函数:x=cosysiny=1−cos2y=1−x2(arctanx)′=1(tany)′=1sec2y=11+x2y=arctanx原函数:x=tanysec2y=1+tan2y=1+x2(arccotx)′=1(coty)′=−1csc2y=−11+x2y=arccotx原函数:x=cotycsc2y=1+cot2y=1+x2
\begin{array}{}
(\arcsin x)^{\prime}=\frac{1}{(\sin y)^{\prime}}=\frac{1}{\cos y}=\frac{1}{\sqrt{1-x^{2}}}\\
y=\arcsin x {\qquad} 原函数: x=\sin y\\
\cos y=\sqrt{1-\sin ^{2} y}=\sqrt{1-x^{2}} \\
(\arccos x)^{\prime}=\frac{1}{(\cos y)^{\prime}}=-\frac{1}{\sin y}=-\frac{1}{\sqrt{1-x^{2}}}\\
y=\arccos x {\qquad}原函数: x=\cos y\\
\sin y=\sqrt{1-\cos ^{2} y}=\sqrt{1-x^{2}} \\
(\arctan x)^{\prime}=\frac{1}{(\tan y)^{\prime}}=\frac{1}{\sec ^{2} y}=\frac{1}{1+x^{2}}\\
y=\arctan x {\qquad}原函数: x=\tan y\\
\sec ^{2} y=1+\tan ^{2} y=1+x^{2} \\
(\operatorname{arccot} x)^{\prime}=\frac{1}{(\cot y)^{\prime}}=-\frac{1}{\csc ^{2} y}=-\frac{1}{1+x^{2}}\\
y=\operatorname{arccot} x {\qquad}原函数: x=\cot y \\
\csc ^{2} y=1+\cot ^{2} y=1+x^{2}\\
\end{array}
(arcsinx)′=(siny)′1=cosy1=1−x21y=arcsinx原函数:x=sinycosy=1−sin2y=1−x2(arccosx)′=(cosy)′1=−siny1=−1−x21y=arccosx原函数:x=cosysiny=1−cos2y=1−x2(arctanx)′=(tany)′1=sec2y1=1+x21y=arctanx原函数:x=tanysec2y=1+tan2y=1+x2(arccotx)′=(coty)′1=−csc2y1=−1+x21y=arccotx原函数:x=cotycsc2y=1+cot2y=1+x2
常考题型
幂指函数求导
形如f(x)=u(x)v(x)f(x)=u(x)^{v(x)}f(x)=u(x)v(x)的函数,其中u(x)u(x)u(x)与v(x)v(x)v(x)均不为常数,称为幂指函数,对幂指函数的处理方式是进行对数恒等变形:
f(x)=u(x)v(x)=ev(x)lnu(x) f(x)=u(x)^{v(x)}=e^{v(x)\ln u(x)} f(x)=u(x)v(x)=ev(x)lnu(x)
幂函数:底数为变量,指数为常量
指数函数,底数为常量,指数为变量
幂指函数,底数为变量,指数为变量
例1
elnx=x,lnxk=klnx,lnx+lny=lnxy
e^{\ln x}=x,\qquad\ln x^k=k\ln x,\qquad\ln x+\ln y=\ln xy
elnx=x,lnxk=klnx,lnx+lny=lnxy
xx=elnxx=exlnx
x^x=e^{\ln x^x}=e^{x\ln x}
xx=elnxx=exlnx
(xx)′=(exlnx)′=exlnx⋅(lnx+x⋅1x)=xx(lnx+1)
(x^x)'=(e^{x\ln x})'=e^{x\ln x}\cdot(\ln x+x\cdot\frac{1}{x})=x^x(\ln x+1)
(xx)′=(exlnx)′=exlnx⋅(lnx+x⋅x1)=xx(lnx+1)
例2
f(x)=(xx)x+xxx(xx)x=eln(xx)x=exln(xx)=ex⋅xlnx=ex2lnx
\begin{array}{}
f(x)=(x^x)^x+x^{x^x}\\
(x^x)^x=e^{\ln(x^x)^x}=e^{x\ln(x^x)}=e^{x\cdot x\ln x}=e^{x^2\ln x}\\
\end{array}
f(x)=(xx)x+xxx(xx)x=eln(xx)x=exln(xx)=ex⋅xlnx=ex2lnx
((xx)x)′=(ex2lnx)′=ex2lnx(2xlnx+x2⋅1x)=(xx)x⋅x(2lnx+1)
\begin{array}{}
((x^x)^x)'=(e^{x^2\ln x})'=e^{x^2\ln x}(2x\ln x+x^2\cdot\frac{1}{x})\\
=(x^x)^x\cdot x(2\ln x+1)
\end{array}
((xx)x)′=(ex2lnx)′=ex2lnx(2xlnx+x2⋅x1)=(xx)x⋅x(2lnx+1)
(xxx)′=((x)xx)′=(eln(x)xx)′=(exxlnx)′=exxlnx(xx⋅1x+(xx)′lnx)=exxlnx(xx⋅x−1+lnx⋅xx(lnx+1))=xxx(xx−1+xx(ln2x+lnx))
\begin{array}{}
(x^{x^x})'=((x)^{x^x})'=(e^{\ln (x)^{x^x}})'=(e^{x^x\ln x})'\\
=e^{x^x\ln x}(x^x\cdot\frac{1}{x}+(x^x)'\ln x)=e^{x^x\ln x}(x^x\cdot x^{-1}+\ln x\cdot x^x(\ln x+1))\\
=x^{x^x}(x^{x-1}+x^x(\ln^2x+\ln x))\\
\end{array}
(xxx)′=((x)xx)′=(eln(x)xx)′=(exxlnx)′=exxlnx(xx⋅x1+(xx)′lnx)=exxlnx(xx⋅x−1+lnx⋅xx(lnx+1))=xxx(xx−1+xx(ln2x+lnx))
f′(x)=(xx)x⋅x(2lnx+1)+xxx(xx−1+xx(ln2x+lnx))
f'(x)=(x^x)^x\cdot x(2\ln x+1)+x^{x^x}(x^{x-1}+x^x(\ln^2x+\ln x))
f′(x)=(xx)x⋅x(2lnx+1)+xxx(xx−1+xx(ln2x+lnx))
隐函数求导
设函数 y=f(x)y=f(x)y=f(x) 是由方程 F(x,y)=0F(x,y)=0F(x,y)=0 所确定的隐函数,要计算 y′y'y′ ,则在方程 F(x,y)=0F(x,y)=0F(x,y)=0 两边同时对 xxx 求导,再解方程即可得到 y′y'y′.
【注】 yyy 要看成 xxx 的函数 f(x)f(x)f(x) ,再运用复合函数求导法则求导
例1
参数方程求导
(1)参数方程的一阶导数设{x=x(t)y=y(t),则dydx=dydt⋅dtdx=dydt/dxdt=y′(t)x′(t)(2)参数方程的二阶导数d2ydx2=ddt(dydx)/dxdt
\begin{array}{}
(1)\qquad参数方程的一阶导数\\
设\left\{\begin{matrix}
x=x(t) \\
y=y(t)
\end{matrix}\right. ,则\frac{dy}{dx}=\frac{dy}{dt}\cdot\frac{dt}{dx}=\frac{dy}{dt}/\frac{dx}{dt}=\frac{y'(t)}{x'(t)}\\
(2)\qquad参数方程的二阶导数\\
\frac{d^2y}{dx^2}=\frac{d}{dt}(\frac{dy}{dx})/\frac{dx}{dt}
\end{array}
(1)参数方程的一阶导数设{x=x(t)y=y(t),则dxdy=dtdy⋅dxdt=dtdy/dtdx=x′(t)y′(t)(2)参数方程的二阶导数dx2d2y=dtd(dxdy)/dtdx
例1
{x=2cos4ty=2sin4t,(0<t<π2)
\begin{cases}
x=2\cos^4t \\
y=2\sin^4t
\end{cases},(0<t<\frac{\pi}{2})
{x=2cos4ty=2sin4t,(0<t<2π)
dydx=y′(t)x′(t)=(2sin4t)′(2cos4t)′=8sin3t⋅cost8cos3t⋅(−sint)=−tan2t
\frac{dy}{dx}=\frac{y'(t)}{x'(t)}=\frac{(2\sin^4t)'}{(2\cos^4t)'}=\frac{8\sin^3t\cdot \cos t}{8\cos^3t\cdot(-\sin t)}=-\tan^2t
dxdy=x′(t)y′(t)=(2cos4t)′(2sin4t)′=8cos3t⋅(−sint)8sin3t⋅cost=−tan2t
d2ydx2=d(dydx)dx=d(−tan2t)dx=d(−tan2t)dt⋅1dxdt=−2tantsec2t18cos3t(−sint)=14cos6t
\begin{array}{}
\frac{d^2y}{dx^2}=\frac{d(\frac{dy}{dx})}{dx}=\frac{d(-\tan^2t)}{dx}=\frac{d(-\tan^2t)}{dt}\cdot\frac{1}{\frac{dx}{dt}}\\
=-2\tan t\sec ^2t\frac{1}{8\cos^3t(-\sin t)}=\frac{1}{4\cos^6t}
\end{array}
dx2d2y=dxd(dxdy)=dxd(−tan2t)=dtd(−tan2t)⋅dtdx1=−2tantsec2t8cos3t(−sint)1=4cos6t1
例2
{x=ln31−t2y=arcsint,(0<t<1)
\begin{cases}
x=\ln^3\sqrt{ 1-t^2 } \\
y=\arcsin t
\end{cases},(0<t<1)
{x=ln31−t2y=arcsint,(0<t<1)
dydx=y′(t)x′(t)=(arcsint)′(ln31−t2)′=11−t213−2t1−t2=−31−t22t
\frac{dy}{dx}=\frac{y'(t)}{x'(t)}=\frac{(\arcsin t)'}{(\ln^3\sqrt{ 1-t^2 })'}=\frac{\frac{1}{\sqrt{ 1-t^2 }}}{\frac{1}{3}\frac{-2t}{1-t^2}}=-\frac{3\sqrt{ 1-t^2 }}{2t}
dxdy=x′(t)y′(t)=(ln31−t2)′(arcsint)′=311−t2−2t1−t21=−2t31−t2
d2ydx2=d(−31−t22t)dt1dxdt=−32(−2t21−t2⋅t−1−t2t2)⋅113−2t1−t2=94(−t2)1−t2−1−t2(1−t2)t3=941−t2−1t3=−941−t2t3
\begin{array}{}
\frac{d^2y}{dx^2}=\frac{d(-\frac{3\sqrt{ 1-t^2 }}{2t})}{dt}\frac{1}{\frac{dx}{dt}}=-\frac{3}{2}(\frac{\frac{-2t}{2\sqrt{ 1-t^2 }}\cdot t-\sqrt{ 1-t^2 }}{t^2})\cdot\frac{1}{\frac{1}{3}\frac{-2t}{1-t^2}}\\
=\frac{9}{4}\frac{(-t^2)\sqrt{ 1-t^2 }-\sqrt{ 1-t^2 }(1-t^2)}{t^3}\\
=\frac{9}{4}\sqrt{ 1-t^2 }\frac{-1}{t^3}=-\frac{9}{4}\frac{\sqrt{ 1-t^2 }}{t^3}
\end{array}
dx2d2y=dtd(−2t31−t2)dtdx1=−23(t221−t2−2t⋅t−1−t2)⋅311−t2−2t1=49t3(−t2)1−t2−1−t2(1−t2)=491−t2t3−1=−49t31−t2
抽象函数
不给出具体解析式,只给出函数的特殊条件或特征的函数即抽象函数
例1
y=axf(lnx),(a>0且a≠1)
y=a^xf(\ln x),(a>0且a \ne 1)
y=axf(lnx),(a>0且a=1)
dydx=ax⋅lna⋅f(lnx)+ax⋅(f(lnx))′=lna⋅ax⋅f(lnx)+ax⋅f′(lnx)⋅(lnx)′=lna⋅axf(lnx)+ax⋅1xf′(lnx)
\begin{array}{}
\frac{dy}{dx}=a^x\cdot \ln a\cdot f(\ln x)+a^x\cdot(f(\ln x))'\\
=\ln a\cdot a^x\cdot f(\ln x)+a^x\cdot f'(\ln x)\cdot(\ln x)'\\
=\ln a\cdot a^xf(\ln x)+a^x\cdot\frac{1}{x}f'(\ln x)
\end{array}
dxdy=ax⋅lna⋅f(lnx)+ax⋅(f(lnx))′=lna⋅ax⋅f(lnx)+ax⋅f′(lnx)⋅(lnx)′=lna⋅axf(lnx)+ax⋅x1f′(lnx)
注
f(x)=sinxf′(x)=cosx(f(x2))′=(sinx2)′=2xcosx2f′(x2)=cosx2
\begin{array}{}
f(x)=\sin x\\
f'(x)=\cos x\\
(f(x^2))'=(\sin x^2)'=2x\cos x^2\\
f'(x^2)=\cos x^2
\end{array}
f(x)=sinxf′(x)=cosx(f(x2))′=(sinx2)′=2xcosx2f′(x2)=cosx2
例2
y=f(x+y)dydx=f′(x+y)⋅(1+dydx)=f′(x+y)1−f′(x+y)d2ydx2=f′′(x+y)⋅(1+dydx)(1+dydx)+f′(x+y)(d2ydx2)=f′′(x+y)(1+dydx)21−f′(x+y)=f′′1(1−f′)21−f′=f′′(1−f′)3
\begin{array}{}
y=f(x+y)\\
\frac{dy}{dx}=f'(x+y)\cdot(1+\frac{dy}{dx})=\frac{f'(x+y)}{1-f'(x+y)}\\
\frac{d^2y}{dx^2}=f''(x+y)\cdot(1+\frac{dy}{dx})(1+\frac{dy}{dx})+f'(x+y)(\frac{d^2y}{dx^2})\\
=\frac{f''(x+y)(1+\frac{dy}{dx})^2}{1-f'(x+y)}=\frac{f''\frac{1}{(1-f')^2}}{1-f'}=\frac{f''}{(1-f')^3}
\end{array}
y=f(x+y)dxdy=f′(x+y)⋅(1+dxdy)=1−f′(x+y)f′(x+y)dx2d2y=f′′(x+y)⋅(1+dxdy)(1+dxdy)+f′(x+y)(dx2d2y)=1−f′(x+y)f′′(x+y)(1+dxdy)2=1−f′f′′(1−f′)21=(1−f′)3f′′
本文围绕导数计算展开,介绍了16个求导公式,包括基本初等函数的求导公式,要求记忆并能推导。阐述了四则运算、复合函数、反函数等求导法则及推导公式。还列举了幂指函数、隐函数、参数方程、抽象函数等常考题型的求导方法及示例。
2万+





