综合运用
![![[Pasted image 20251124174247.png]]](https://i-blog.csdnimg.cn/direct/12be4094a90246c799d38b2d09a7ce7d.png)
分析:求方阵的n次幂①稀疏矩阵(零比较多):找规律②秩为1的矩阵:An=(trA)n−1A③对角线元素为相同值的上(下)三角矩阵:二项展开④可相似对角化:An=PΛnP−1 \begin{aligned} &分析:求方阵的n次幂 \\ &① \text{稀疏矩阵(零比较多):找规律} \\ &② \text{秩为1的矩阵:} A^n = (\text{tr}A)^{n-1}A \\ &③ \text{对角线元素为相同值的上(下)三角矩阵:二项展开} \\ &④ \text{可相似对角化:} A^n = P\Lambda^nP^{-1} \end{aligned} 分析:求方阵的n次幂①稀疏矩阵(零比较多):找规律②秩为1的矩阵:An=(trA)n−1A③对角线元素为相同值的上(下)三角矩阵:二项展开④可相似对角化:An=PΛnP−1
解:(1) ∣λE−A∣=∣λ1−1−2λ+3000λ∣=λ(λ+1)(λ+2)=0故A的特征值为−2,−1,0.A+2E=(2−112−10002)→(2−10000001)→(1−120001000),(1210)为λ=−2的一个特征向量.A+E=(1−112−20001)→(1−10000001)→(1−10001000),(110)为λ=−1的一个特征向量.A=(0−112−30000)→(1−3200−11000)→(10−3201−1000),(3211)为λ=0的一个特征向量.A99=(12132111001)(−2000−10000)99(12132111001)−1 \begin{aligned} &解:(1)\ |\lambda E - A| = \begin{vmatrix} \lambda & 1 & -1 \\ -2 & \lambda + 3 & 0 \\ 0 & 0 & \lambda \end{vmatrix} = \lambda(\lambda + 1)(\lambda + 2) = 0 \\ &故A的特征值为-2, -1, 0. \\ \\ &A + 2E = \begin{pmatrix} 2 & -1 & 1 \\ 2 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \to \begin{pmatrix} 2 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \to \begin{pmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},\begin{pmatrix} \frac{1}{2} \\ 1 \\ 0 \end{pmatrix}为\lambda = -2的一个特征向量. \\ \\ &A + E = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \to \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \to \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}为\lambda = -1的一个特征向量. \\ \\ &A = \begin{pmatrix} 0 & -1 & 1 \\ 2 & -3 & 0 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & -\frac{3}{2} & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & -\frac{3}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix},\begin{pmatrix} \frac{3}{2} \\ 1 \\ 1 \end{pmatrix}为\lambda = 0的一个特征向量. \\ \\ &A^{99} = \begin{pmatrix} \frac{1}{2} & 1 & \frac{3}{2} \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}^{99} \begin{pmatrix} \frac{1}{2} & 1 & \frac{3}{2} \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^{-1} \end{aligned} 解:(1) ∣λE−A∣=λ−201λ+30−10λ=λ(λ+1)(λ+2)=0故A的特征值为−2,−1,0.A+2E=220−1−10102→200−100001→100−2100010,2110为λ=−2的一个特征向量.A+E=120−1−20101→100−100001→100−100010,110为λ=−1的一个特征向量.A=020−1−30100→100−23−10010→100010−23−10,2311为λ=0的一个特征向量.A99=21101102311−2000−100009921101102311−1
(12132∣100111∣010001∣001)→(123∣2000−1−2∣−210001∣001)→(120∣20−30−10∣−212001∣001)→(100∣−221010∣2−1−2001∣001)A99=(12132111001)(−2000−10000)99(12132111001)−1=(12132111001)((−2)99000(−1)990000)(−2212−1−2001)=(−298−10−299−10000)(−2212−1−2001)=(−2+2991−2992−2982100−2−2100+12−299000) \begin{aligned} &\begin{pmatrix} \frac{1}{2} & 1 & \frac{3}{2} & \bigg| & 1 & 0 & 0 \\ 1 & 1 & 1 & \bigg| & 0 & 1 & 0 \\ 0 & 0 & 1 & \bigg| & 0 & 0 & 1 \end{pmatrix} \to \begin{pmatrix} 1 & 2 & 3 & \bigg| & 2 & 0 & 0 \\ 0 & -1 & -2 & \bigg| & -2 & 1 & 0 \\ 0 & 0 & 1 & \bigg| & 0 & 0 & 1 \end{pmatrix} \\ &\to \begin{pmatrix} 1 & 2 & 0 & \bigg| & 2 & 0 & -3 \\ 0 & -1 & 0 & \bigg| & -2 & 1 & 2 \\ 0 & 0 & 1 & \bigg| & 0 & 0 & 1 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 0 & \bigg| & -2 & 2 & 1 \\ 0 & 1 & 0 & \bigg| & 2 & -1 & -2 \\ 0 & 0 & 1 & \bigg| & 0 & 0 & 1 \end{pmatrix} \\ \\ &A^{99} = \begin{pmatrix} \frac{1}{2} & 1 & \frac{3}{2} \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}^{99} \begin{pmatrix} \frac{1}{2} & 1 & \frac{3}{2} \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^{-1} \\ &= \begin{pmatrix} \frac{1}{2} & 1 & \frac{3}{2} \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} (-2)^{99} & 0 & 0 \\ 0 & (-1)^{99} & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} -2 & 2 & 1 \\ 2 & -1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} -2^{98} & -1 & 0 \\ -2^{99} & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} -2 & 2 & 1 \\ 2 & -1 & -2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -2+2^{99} & 1-2^{99} & 2-2^{98} \\ 2^{100} - 2 & -2^{100} + 1 & 2-2^{99} \\ 0 & 0 & 0 \end{pmatrix} \end{aligned} 21101102311100010001→1002−103−212−20010001→1002−100012−20010−321→100010001−2202−101−21A99=21101102311−2000−100009921101102311−1=21101102311(−2)99000(−1)990000−2202−101−21=−298−2990−1−10000−2202−101−21=−2+2992100−201−299−2100+102−2982−2990
(2)
分析:思路1: B100=(B2)50=(BA)50=BABABA⋯BA无法继续思路2: B100=B98B2=B98⋅BA=B99A=B97B2A=B97BAA=B98A2⋮B100=BA99思路3: B3=B2A=BAA=BA2 \begin{aligned} &分析: \\ &思路1: \ B^{100} = (B^2)^{50} = (BA)^{50} = BABABA\cdots BA\qquad无法继续 \\ &思路2: \ B^{100} = B^{98}B^2 = B^{98} \cdot BA = B^{99}A = B^{97}B^2A \\ & \quad \quad = B^{97}BAA = B^{98}A^2 \\ & \quad \quad \vdots \\ & \quad \quad B^{100} = BA^{99} \\&
思路3: \ B^3 = B^2A = BAA = BA^2\end{aligned} 分析:思路1: B100=(B2)50=(BA)50=BABABA⋯BA无法继续思路2: B100=B98B2=B98⋅BA=B99A=B97B2A=B97BAA=B98A2⋮B100=BA99思路3: B3=B2A=BAA=BA2
(2) B100=B98B2=⋯=BA99=(α1,α2,α3)(−2+2991−2992−2982100−2−2100+12−299000)=(β1,β2,β3)β1=(299−2)α1+(2100−2)α2β2=(1−299)α1+(−2100+1)α2β3=(2−298)α1+(2−299)α2 \begin{aligned} &(2)\ B^{100} = B^{98}B^2 = \cdots = BA^{99} = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} -2 + 2^{99} & 1 - 2^{99} & 2 - 2^{98} \\ 2^{100} - 2 & -2^{100} + 1 & 2 - 2^{99} \\ 0 & 0 & 0 \end{pmatrix} \\ &= (\beta_1, \beta_2, \beta_3) \\ \\ &\beta_1 = (2^{99} - 2)\alpha_1 + (2^{100} - 2)\alpha_2 \\ &\beta_2 = (1 - 2^{99})\alpha_1 + (-2^{100} + 1)\alpha_2 \\ &\beta_3 = (2 - 2^{98})\alpha_1 + (2 - 2^{99})\alpha_2 \end{aligned} (2) B100=B98B2=⋯=BA99=(α1,α2,α3)−2+2992100−201−299−2100+102−2982−2990=(β1,β2,β3)β1=(299−2)α1+(2100−2)α2β2=(1−299)α1+(−2100+1)α2β3=(2−298)α1+(2−299)α2
【小结】
如果矩阵AAA可以相似对角化,则可以按照如下方法计算AnA^nAn:
- 先求出可逆矩阵PPP及对角矩阵Λ\LambdaΛ使得P−1AP=ΛP^{-1}AP=\LambdaP−1AP=Λ;
- 由矩阵的运算法则可得A=PΛP−1A=P\Lambda P^{-1}A=PΛP−1,则An=PΛnP−1A^n=P\Lambda^n P^{-1}An=PΛnP−1。
![![[Pasted image 20251125064652.png]]](https://i-blog.csdnimg.cn/direct/248fa01591904bdcb096c926fd211aa4.png)
![![[Pasted image 20251125064704.png]]](https://i-blog.csdnimg.cn/direct/e56cfa3374814a7c98bc3f4d5e32b291.png)
解:(1){xn+1=56xn+25(16xn+yn)yn+1=35(16xn+yn) 解: (1)\begin{cases} x_{n+1} = \dfrac{5}{6}x_n + \dfrac{2}{5}\left( \dfrac{1}{6}x_n + y_n \right) \\ y_{n+1} = \dfrac{3}{5}\left( \dfrac{1}{6}x_n + y_n \right) \end{cases} 解:(1)⎩⎨⎧xn+1=65xn+52(61xn+yn)yn+1=53(61xn+yn) 即{xn+1=910xn+25ynyn+1=110xn+35yn 即 \begin{cases} x_{n+1} = \dfrac{9}{10}x_n + \dfrac{2}{5}y_n \\ y_{n+1} = \dfrac{1}{10}x_n + \dfrac{3}{5}y_n \end{cases} 即⎩⎨⎧xn+1=109xn+52ynyn+1=101xn+53yn A=(9102511035) A = \begin{pmatrix} \dfrac{9}{10} & \dfrac{2}{5} \\ \dfrac{1}{10} & \dfrac{3}{5} \end{pmatrix} A=1091015253
(2) Aη1=(9102511035)(41)=(41), 1为特征值 (2)\ A\eta_1 = \begin{pmatrix} \dfrac{9}{10} & \dfrac{2}{5} \\ \dfrac{1}{10} & \dfrac{3}{5} \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \end{pmatrix},\ 1为特征值 (2) Aη1=1091015253(41)=(41), 1为特征值 Aη2=(9102511035)(−11)=(−1212), 12 为特征值 A\eta_2 = \begin{pmatrix} \dfrac{9}{10} & \dfrac{2}{5} \\ \dfrac{1}{10} & \dfrac{3}{5} \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -\dfrac{1}{2} \\ \dfrac{1}{2} \end{pmatrix},\ \dfrac{1}{2}\ 为特征值 Aη2=1091015253(−11)=−2121, 21 为特征值
(3) (xn+1yn+1)=A(xnyn)=AA(xn−1yn−1)=⋯=An(x1y1)=An(1212) (3)\ \begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = A\begin{pmatrix} x_n \\ y_n \end{pmatrix} = AA\begin{pmatrix} x_{n-1} \\ y_{n-1} \end{pmatrix} = \cdots = A^n\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = A^n\begin{pmatrix} \dfrac{1}{2} \\ \dfrac{1}{2} \end{pmatrix} (3) (xn+1yn+1)=A(xnyn)=AA(xn−1yn−1)=⋯=An(x1y1)=An2121 计算:An=(4−111)(10012)n(4−111)−1=(4−111)(100(12)n)15(11−14) 计算:A^n = \begin{pmatrix} 4 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \dfrac{1}{2} \end{pmatrix}^n \begin{pmatrix} 4 & -1 \\ 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 4 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \left( \dfrac{1}{2} \right)^n \end{pmatrix} \dfrac{1}{5} \begin{pmatrix} 1 & 1 \\ -1 & 4 \end{pmatrix} 计算:An=(41−11)(10021)n(41−11)−1=(41−11)100(21)n51(1−114) =15(4+12n4−42n1−12n1+42n), (xn+1yn+1)=110(8−32n2+32n) = \dfrac{1}{5} \begin{pmatrix} 4 + \dfrac{1}{2^n} & 4 - \dfrac{4}{2^n} \\ 1 - \dfrac{1}{2^n} & 1 + \dfrac{4}{2^n} \end{pmatrix},\ \begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \dfrac{1}{10} \begin{pmatrix} 8 - \dfrac{3}{2^n} \\ 2 + \dfrac{3}{2^n} \end{pmatrix} =514+2n11−2n14−2n41+2n4, (xn+1yn+1)=1018−2n32+2n3
注2:设(11)=x1(41)+x2(−11), 解得x1=25, x2=35 注2: 设\begin{pmatrix} 1 \\ 1 \end{pmatrix} = x_1\begin{pmatrix} 4 \\ 1 \end{pmatrix} + x_2\begin{pmatrix} -1 \\ 1 \end{pmatrix},\ 解得x_1 = \dfrac{2}{5},\ x_2 = \dfrac{3}{5} 注2:设(11)=x1(41)+x2(−11), 解得x1=52, x2=53
(4−1∣111∣1)→(11∣10−5∣−3)→(10∣2501∣35)
\begin{pmatrix}
4 & -1 & \bigg| & 1 \\
1 & 1 & \bigg| & 1
\end{pmatrix} \to \begin{pmatrix}
1 & 1 & \bigg| & 1 \\
0 & -5 & \bigg| & -3
\end{pmatrix} \to \begin{pmatrix}
1 & 0 & \bigg| & \dfrac{2}{5} \\
0 & 1 & \bigg| & \dfrac{3}{5}
\end{pmatrix}
41−1111→101−51−3→10015253
(xn+1yn+1)=12An(11)=12An(25(41)+35(−11))=15⋅1n(41)+310⋅12n(−11) \begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \dfrac{1}{2}A^n\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \dfrac{1}{2}A^n\left( \dfrac{2}{5}\begin{pmatrix} 4 \\ 1 \end{pmatrix} + \dfrac{3}{5}\begin{pmatrix} -1 \\ 1 \end{pmatrix} \right) = \dfrac{1}{5} \cdot 1^n\begin{pmatrix} 4 \\ 1 \end{pmatrix} + \dfrac{3}{10} \cdot \dfrac{1}{2^n}\begin{pmatrix} -1 \\ 1 \end{pmatrix} (xn+1yn+1)=21An(11)=21An(52(41)+53(−11))=51⋅1n(41)+103⋅2n1(−11)
【小结】无论矩阵A\boldsymbol{A}A是否可以相似对角化,都可以按照如下方法计算Anβ\boldsymbol{A}^n\boldsymbol{\beta}Anβ:
- 先求出A\boldsymbol{A}A的特征值和特征向量,其中Aα1=λ1α1\boldsymbol{A}\boldsymbol{\alpha}_1 = \lambda_1\boldsymbol{\alpha}_1Aα1=λ1α1,Aα2=λ2α2\boldsymbol{A}\boldsymbol{\alpha}_2 = \lambda_2\boldsymbol{\alpha}_2Aα2=λ2α2,⋯\cdots⋯,Aαn=λnαn\boldsymbol{A}\boldsymbol{\alpha}_n = \lambda_n\boldsymbol{\alpha}_nAαn=λnαn;
- 将β\boldsymbol{\beta}β用特征向量α1\boldsymbol{\alpha}_1α1,α2\boldsymbol{\alpha}_2α2,⋯\cdots⋯,αn\boldsymbol{\alpha}_nαn线性表示为β=k1α1+k2α2+⋯+knαn\boldsymbol{\beta} = k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + \cdots + k_n\boldsymbol{\alpha}_nβ=k1α1+k2α2+⋯+knαn;
- Anβ=An(k1α1+k2α2+⋯+knαn)=k1λ1nα1+k2λ2nα2+⋯+knλnnαn\boldsymbol{A}^n\boldsymbol{\beta} = \boldsymbol{A}^n(k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + \cdots + k_n\boldsymbol{\alpha}_n) = k_1\lambda_1^n\boldsymbol{\alpha}_1 + k_2\lambda_2^n\boldsymbol{\alpha}_2 + \cdots + k_n\lambda_n^n\boldsymbol{\alpha}_nAnβ=An(k1α1+k2α2+⋯+knαn)=k1λ1nα1+k2λ2nα2+⋯+knλnnαn。
![![[Pasted image 20251125081423.png]]](https://i-blog.csdnimg.cn/direct/d20946cfdbcf4dd2b3b79592c5a1947c.png)
?A=P−1ΛP①=PΛP−1②✓Λ=P−1AP③✓Λ=PAP−1④ \begin{aligned} &?\quad A = P^{-1}\Lambda P\quad ① \\ &= P\Lambda P^{-1}\quad ②\quad \checkmark \\ &\Lambda = P^{-1}AP\quad ③\quad \checkmark \\ &\Lambda = PAP^{-1}\quad ④ \\ \end{aligned} ?A=P−1ΛP①=PΛP−1②✓Λ=P−1AP③✓Λ=PAP−1④ A(α1 α2 α3)=(Aα1 Aα2 Aα3)=(λ1α1 λ2α2 λ3α3)=(α1 α2 α3)(λ1λ2λ3)A=(α1 α2 α3)(λ1λ2λ3)(α1 α2 α3)−1 \begin{aligned} &A(\alpha_1\ \alpha_2\ \alpha_3) = (A\alpha_1\ A\alpha_2\ A\alpha_3) \\ &= (\lambda_1\alpha_1\ \lambda_2\alpha_2\ \lambda_3\alpha_3) = (\alpha_1\ \alpha_2\ \alpha_3)\begin{pmatrix} \lambda_1 \\ & \lambda_2 \\ & & \lambda_3 \end{pmatrix} \\ &A = (\alpha_1\ \alpha_2\ \alpha_3)\begin{pmatrix} \lambda_1 \\ & \lambda_2 \\ & & \lambda_3 \end{pmatrix}(\alpha_1\ \alpha_2\ \alpha_3)^{-1} \\ \end{aligned} A(α1 α2 α3)=(Aα1 Aα2 Aα3)=(λ1α1 λ2α2 λ3α3)=(α1 α2 α3)λ1λ2λ3A=(α1 α2 α3)λ1λ2λ3(α1 α2 α3)−1 ① 求矩阵P,使得A=PΛP−1P为特征向量(P−1AP=Λ)② 求矩阵P,使得A=P−1ΛPP为特征向量的逆(PAP=Λ) \begin{aligned} &①\ 求矩阵P,使得A = P\Lambda P^{-1} \\ &\qquad \text{P为特征向量}\quad (P^{-1}AP = \Lambda) \\ &②\ 求矩阵P,使得A = P^{-1}\Lambda P \\ &\qquad \text{P为特征向量的逆}\quad (PAP = \Lambda) \\ \end{aligned} ① 求矩阵P,使得A=PΛP−1P为特征向量(P−1AP=Λ)② 求矩阵P,使得A=P−1ΛPP为特征向量的逆(PAP=Λ)
解:(1)由相似必要条件可得{x−4=y+1−2y=4x−8⇒{x=3y=−2 解: (1) 由相似必要条件可得 \begin{cases} x - 4 = y + 1 \\ -2y = 4x-8 \end{cases} \Rightarrow \begin{cases} x = 3 \\ y = -2 \end{cases} 解:(1)由相似必要条件可得{x−4=y+1−2y=4x−8⇒{x=3y=−2
A=P1ΛP1−1, B=P2ΛP2−1P1−1AP1=Λ=P2−1BP2P2P1−1AP1P2−1=B(P1P2−1)−1AP1P2−1=B故取 P=P1P2−1 \begin{aligned} &\boldsymbol{A} = \boldsymbol{P}_1\boldsymbol{\Lambda}\boldsymbol{P}_1^{-1},\ \boldsymbol{B} = \boldsymbol{P}_2\boldsymbol{\Lambda}\boldsymbol{P}_2^{-1} \\ &\boldsymbol{P}_1^{-1}\boldsymbol{A}\boldsymbol{P}_1 = \boldsymbol{\Lambda} = \boldsymbol{P}_2^{-1}\boldsymbol{B}\boldsymbol{P}_2 \\ &\boldsymbol{P}_2\boldsymbol{P}_1^{-1}\boldsymbol{A}\boldsymbol{P}_1\boldsymbol{P}_2^{-1} = \boldsymbol{B} \\ &(\boldsymbol{P}_1\boldsymbol{P}_2^{-1})^{-1}\boldsymbol{A}\boldsymbol{P}_1\boldsymbol{P}_2^{-1} = \boldsymbol{B} \\ &\text{故取}\ \boldsymbol{P} = \boldsymbol{P}_1\boldsymbol{P}_2^{-1} \end{aligned} A=P1ΛP1−1, B=P2ΛP2−1P1−1AP1=Λ=P2−1BP2P2P1−1AP1P2−1=B(P1P2−1)−1AP1P2−1=B故取 P=P1P2−1
解:(2) B的特征值为2,−1,−2,A与B相似,故A的特征值为2,−1,−2.A−2E=(−4−2121−200−4)→(1120001000), (−120)为2的一个特征向量.A+E=(−1−2124−2001)→(120001000), (−210)为−1的一个特征向量.A+2E=(0−2125−2000)→(152−101−12000)→(101401−12000), (1−2−4)为−2的一个特征向量. \begin{aligned} &解: (2)\ \boldsymbol{B}的特征值为2,-1,-2,\boldsymbol{A}与\boldsymbol{B}相似,故\boldsymbol{A}的特征值为2,-1,-2. \\& \boldsymbol{A}-2\boldsymbol{E}=\begin{pmatrix} -4 & -2 & 1 \\ 2 & 1 & -2 \\ 0 & 0 & -4 \end{pmatrix}\to\begin{pmatrix} 1 & \dfrac{1}{2} & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},\ \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}为2的一个特征向量. \\& \boldsymbol{A}+\boldsymbol{E}=\begin{pmatrix} -1 & -2 & 1 \\ 2 & 4 & -2 \\ 0 & 0 & 1 \end{pmatrix}\to\begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},\ \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}为-1的一个特征向量. \\& \boldsymbol{A}+2\boldsymbol{E}=\begin{pmatrix} 0 & -2 & 1 \\ 2 & 5 & -2 \\ 0 & 0 & 0 \end{pmatrix}\to\begin{pmatrix} 1 & \dfrac{5}{2} & -1 \\ 0 & 1 & -\dfrac{1}{2} \\ 0 & 0 & 0 \end{pmatrix}\to\begin{pmatrix} 1 & 0 & \dfrac{1}{4} \\ 0 & 1 & -\dfrac{1}{2} \\ 0 & 0 & 0 \end{pmatrix},\ \begin{pmatrix} 1 \\ -2 \\ -4 \end{pmatrix}为-2的一个特征向量. \end{aligned} 解:(2) B的特征值为2,−1,−2,A与B相似,故A的特征值为2,−1,−2.A−2E=−420−2101−2−4→1002100010, −120为2的一个特征向量.A+E=−120−2401−21→100200010, −210为−1的一个特征向量.A+2E=020−2501−20→1002510−1−210→10001041−210, 1−2−4为−2的一个特征向量.
令P1=(−1−2−1212004),P1−1AP1=(2000−1000−2) 令\boldsymbol{P_{1}} = \begin{pmatrix} -1 & -2 & -1 \\ 2 & 1 & 2 \\ 0 & 0 & 4 \end{pmatrix} , \boldsymbol{P}_1^{-1}\boldsymbol{A}\boldsymbol{P}_1 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix} 令P1=−120−210−124,P1−1AP1=2000−1000−2B−2E=(0100−3000−4)→(010001000), (100)为2的一个特征向量B+E=(31000000−1)→(310001000), (1−30)为−1的一个特征向量B+2E=(410010000)→(100010000), (001)为−2的一个特征向量令P2=(1100−30001),P2−1AP2=(2000−1000−2)
\begin{aligned} &\boldsymbol{B}-2\boldsymbol{E} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -4 \end{pmatrix} \to \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},\ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}为2的一个特征向量 \\ &\boldsymbol{B}+\boldsymbol{E} = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \to \begin{pmatrix} 3 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},\ \begin{pmatrix} 1 \\ -3 \\ 0 \end{pmatrix}为-1的一个特征向量 \\ &\boldsymbol{B}+2\boldsymbol{E} = \begin{pmatrix} 4 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix},\ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}为-2的一个特征向量 \\ &令\boldsymbol{P}_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{pmatrix} ,\boldsymbol{P}_2^{-1}\boldsymbol{A}\boldsymbol{P}_2= \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}\end{aligned} B−2E=0001−3000−4→000100010, 100为2的一个特征向量B+E=30010000−1→300100010, 1−30为−1的一个特征向量B+2E=400110000→100010000, 001为−2的一个特征向量令P2=1001−30001,P2−1AP2=2000−1000−2
P1−1AP1= P2−1BP2P2P1−1AP1P2−1=B, (P1P2−1)−1A(P1P2−1)=B令P=P1P2−1=(−1−2121−200−4)(11300−130001)=(−113−1213−200−4) \begin{aligned} &\boldsymbol{P}_1^{-1}\boldsymbol{A}\boldsymbol{P}_1 =\ \boldsymbol{P}_2^{-1}\boldsymbol{B}\boldsymbol{P}_2 \\ &\boldsymbol{P}_2\boldsymbol{P}_1^{-1}\boldsymbol{A}\boldsymbol{P}_1\boldsymbol{P}_2^{-1} = \boldsymbol{B},\ (\boldsymbol{P}_1\boldsymbol{P}^{-1}_2)^{-1}\boldsymbol{A}(\boldsymbol{P}_1\boldsymbol{P}^{-1}_2) = \boldsymbol{B} \\ &令\boldsymbol{P} = \boldsymbol{P}_1\boldsymbol{P}_2^{-1} = \begin{pmatrix} -1 & -2 & 1 \\ 2 & 1 & -2 \\ 0 & 0 & -4 \end{pmatrix} \begin{pmatrix} 1 & \dfrac{1}{3} & 0 \\ 0 & -\dfrac{1}{3} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & \dfrac{1}{3} & -1 \\ 2 & \dfrac{1}{3} & -2 \\ 0 & 0 & -4 \end{pmatrix} \end{aligned} P1−1AP1= P2−1BP2P2P1−1AP1P2−1=B, (P1P2−1)−1A(P1P2−1)=B令P=P1P2−1=−120−2101−2−410031−310001=−12031310−1−2−4
验证
AP=(−2−2123−200−2)(−11312132004)=(−2−432453−400−8)PB=(−11312132004)(2100−1000−2)=(−2−432453−400−8) \begin{aligned} \boldsymbol{A}\boldsymbol{P} &= \begin{pmatrix} -2 & -2 & 1 \\ 2 & 3 & -2 \\ 0 & 0 & -2 \end{pmatrix} \begin{pmatrix} -1 & \dfrac{1}{3} & 1 \\ 2 & \dfrac{1}{3} & 2 \\ 0 & 0 & 4 \end{pmatrix} = \begin{pmatrix} -2 & -\dfrac{4}{3} & 2 \\ 4 & \dfrac{5}{3} & -4 \\ 0 & 0 & -8 \end{pmatrix} \\ \boldsymbol{P}\boldsymbol{B} &= \begin{pmatrix} -1 & \dfrac{1}{3} & 1 \\ 2 & \dfrac{1}{3} & 2 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix} = \begin{pmatrix} -2 & -\dfrac{4}{3} & 2 \\ 4 & \dfrac{5}{3} & -4 \\ 0 & 0 & -8 \end{pmatrix} \end{aligned} APPB=−220−2301−2−2−12031310124=−240−343502−4−8=−120313101242001−1000−2=−240−343502−4−8
【小结】如果矩阵 A, B 相似且都可以相似对角化,则可以按照如下方法计算可逆矩阵 P, 使得 P−1AP=B:① 分别求出可逆矩阵 P1, P2 使得 P1−1AP1=P2−1BP2=Λ;② 由 P1−1AP1=P2−1BP2 可得 P2P1−1AP1P2−1=(P1P2−1)−1A(P1P2−1)=B, 故令 P=P1P2−1 则有 P−1AP=B。 \begin{aligned} &\text{【小结】如果矩阵 } \boldsymbol{A},\ \boldsymbol{B} \text{ 相似且都可以相似对角化,则可以按照如下方法计算可逆矩阵 } \boldsymbol{P},\\&\ \text{使得 } \boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} = \boldsymbol{B}: \\ &① \text{ 分别求出可逆矩阵 } \boldsymbol{P}_1,\ \boldsymbol{P}_2 \text{ 使得 } \boldsymbol{P}_1^{-1}\boldsymbol{A}\boldsymbol{P}_1 = \boldsymbol{P}_2^{-1}\boldsymbol{B}\boldsymbol{P}_2 = \boldsymbol{\varLambda}; \\ &② \text{ 由 } \boldsymbol{P}_1^{-1}\boldsymbol{A}\boldsymbol{P}_1 = \boldsymbol{P}_2^{-1}\boldsymbol{B}\boldsymbol{P}_2 \text{ 可得 } \boldsymbol{P}_2\boldsymbol{P}_1^{-1}\boldsymbol{A}\boldsymbol{P}_1\boldsymbol{P}_2^{-1} = (\boldsymbol{P}_1\boldsymbol{P}_2^{-1})^{-1}\boldsymbol{A}(\boldsymbol{P}_1\boldsymbol{P}_2^{-1}) = \boldsymbol{B},\\&\ \text{故令 } \boldsymbol{P} = \boldsymbol{P}_1\boldsymbol{P}_2^{-1} \text{ 则有 } \boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} = \boldsymbol{B}。 \end{aligned} 【小结】如果矩阵 A, B 相似且都可以相似对角化,则可以按照如下方法计算可逆矩阵 P, 使得 P−1AP=B:① 分别求出可逆矩阵 P1, P2 使得 P1−1AP1=P2−1BP2=Λ;② 由 P1−1AP1=P2−1BP2 可得 P2P1−1AP1P2−1=(P1P2−1)−1A(P1P2−1)=B, 故令 P=P1P2−1 则有 P−1AP=B。
A∼B (A与B相似)① 若A,B均可以相似对角化② 一个可,一个不可. ×③ 若两个均不可. (没考点, 只能用定义)参考87题. \begin{aligned} &\boldsymbol{A} \sim \boldsymbol{B} \ (\boldsymbol{A}与\boldsymbol{B}相似) \\ &①\ 若\boldsymbol{A},\boldsymbol{B}均可以相似对角化 \\ &②\ 一个可,一个不可.\ \times \\ &③\ 若两个均不可.\ (\text{没考点, 只能用定义}) \\ &\quad \text{参考87题.} \end{aligned} A∼B (A与B相似)① 若A,B均可以相似对角化② 一个可,一个不可. ×③ 若两个均不可. (没考点, 只能用定义)参考87题.
eg: A=(1201), B=(1021)问:求所有可逆矩阵P, 使得P−1AP=B?设P=(x1x2x3x4), (1201)(x1x2x3x4)=(x1x2x3x4)(1021)(x1+2x3x2+2x4x3x4)=(x1+2x2x2x3+2x4x4){x1+2x3=x1+2x2x2+2x4=x2x3=x3+2x4x4=x4 ⟹ {x2−x3=0x4=0x4=00=0(01−10000100000000), k1(1000)+k2(0110)=(k1k2k20) \begin{aligned} &\text{eg: } \boldsymbol{A} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix},\ \boldsymbol{B} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \\ &\text{问:求所有可逆矩阵} \boldsymbol{P},\ \text{使得} \boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} = \boldsymbol{B}? \\ &\text{设} \boldsymbol{P} = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix},\ \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \\ &\begin{pmatrix} x_1 + 2x_3 & x_2 + 2x_4 \\ x_3 & x_4 \end{pmatrix} = \begin{pmatrix} x_1 + 2x_2 & x_2 \\ x_3 + 2x_4 & x_4 \end{pmatrix} \\ &\begin{cases} x_1 + 2x_3 = x_1 + 2x_2 \\ x_2 + 2x_4 = x_2 \\ x_3 = x_3 + 2x_4 \\ x_4 = x_4 \end{cases} \implies \begin{cases} x_2 - x_3 = 0 \\ x_4 = 0 \\ x_4 = 0 \\ 0 = 0 \end{cases} \\ &\begin{pmatrix} 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},\ k_1 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} k_1 \\ k_2 \\ k_2 \\ 0 \end{pmatrix} \end{aligned} eg: A=(1021), B=(1201)问:求所有可逆矩阵P, 使得P−1AP=B?设P=(x1x3x2x4), (1021)(x1x3x2x4)=(x1x3x2x4)(1201)(x1+2x3x3x2+2x4x4)=(x1+2x2x3+2x4x2x4)⎩⎨⎧x1+2x3=x1+2x2x2+2x4=x2x3=x3+2x4x4=x4⟹⎩⎨⎧x2−x3=0x4=0x4=00=000001000−10000100, k11000+k20110=k1k2k20
验证
(1201)(k1k2k20)=(k1+2k2k2k20)(k1k2k20)(1021)=(k1+2k2k2k20)∣k1k2k20∣=−k22≠0k2≠0 \begin{aligned} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} k_1 & k_2 \\ k_2 & 0 \end{pmatrix} &= \begin{pmatrix} k_1 + 2k_2 & k_2 \\ k_2 & 0 \end{pmatrix} \\ \begin{pmatrix} k_1 & k_2 \\ k_2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} &= \begin{pmatrix} k_1 + 2k_2 & k_2 \\ k_2 & 0 \end{pmatrix} \\ \begin{vmatrix} k_1 & k_2 \\ k_2 & 0 \end{vmatrix} &= -k_2^2 \neq 0 \\ k_2 &\neq 0 \end{aligned} (1021)(k1k2k20)(k1k2k20)(1201)k1k2k20k2=(k1+2k2k2k20)=(k1+2k2k2k20)=−k22=0=0
得
P=(k1k2k20),k2≠0 \boldsymbol{P} = \begin{pmatrix} k_1 & k_2 \\ k_2 & 0 \end{pmatrix}, \quad k_2 \neq 0 P=(k1k2k20),k2=0
3120

被折叠的 条评论
为什么被折叠?



