线代强化NO20|矩阵的相似与相似对角化|综合运用

综合运用

![[Pasted image 20251124174247.png]]

分析:求方阵的n次幂①稀疏矩阵(零比较多):找规律②秩为1的矩阵:An=(trA)n−1A③对角线元素为相同值的上(下)三角矩阵:二项展开④可相似对角化:An=PΛnP−1 \begin{aligned} &分析:求方阵的n次幂 \\ &① \text{稀疏矩阵(零比较多):找规律} \\ &② \text{秩为1的矩阵:} A^n = (\text{tr}A)^{n-1}A \\ &③ \text{对角线元素为相同值的上(下)三角矩阵:二项展开} \\ &④ \text{可相似对角化:} A^n = P\Lambda^nP^{-1} \end{aligned} 分析:求方阵的n次幂稀疏矩阵(零比较多):找规律秩为1的矩阵:An=(trA)n1A对角线元素为相同值的上(下)三角矩阵:二项展开可相似对角化:An=PΛnP1
解:(1) ∣λE−A∣=∣λ1−1−2λ+3000λ∣=λ(λ+1)(λ+2)=0故A的特征值为−2,−1,0.A+2E=(2−112−10002)→(2−10000001)→(1−120001000),(1210)为λ=−2的一个特征向量.A+E=(1−112−20001)→(1−10000001)→(1−10001000),(110)为λ=−1的一个特征向量.A=(0−112−30000)→(1−3200−11000)→(10−3201−1000),(3211)为λ=0的一个特征向量.A99=(12132111001)(−2000−10000)99(12132111001)−1 \begin{aligned} &解:(1)\ |\lambda E - A| = \begin{vmatrix} \lambda & 1 & -1 \\ -2 & \lambda + 3 & 0 \\ 0 & 0 & \lambda \end{vmatrix} = \lambda(\lambda + 1)(\lambda + 2) = 0 \\ &故A的特征值为-2, -1, 0. \\ \\ &A + 2E = \begin{pmatrix} 2 & -1 & 1 \\ 2 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \to \begin{pmatrix} 2 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \to \begin{pmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},\begin{pmatrix} \frac{1}{2} \\ 1 \\ 0 \end{pmatrix}为\lambda = -2的一个特征向量. \\ \\ &A + E = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \to \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \to \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}为\lambda = -1的一个特征向量. \\ \\ &A = \begin{pmatrix} 0 & -1 & 1 \\ 2 & -3 & 0 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & -\frac{3}{2} & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & -\frac{3}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix},\begin{pmatrix} \frac{3}{2} \\ 1 \\ 1 \end{pmatrix}为\lambda = 0的一个特征向量. \\ \\ &A^{99} = \begin{pmatrix} \frac{1}{2} & 1 & \frac{3}{2} \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}^{99} \begin{pmatrix} \frac{1}{2} & 1 & \frac{3}{2} \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^{-1} \end{aligned} 解:(1) λEA=λ201λ+3010λ=λ(λ+1)(λ+2)=0A的特征值为2,1,0.A+2E=22011010220010000110021000102110λ=2的一个特征向量.A+E=120120101100100001100100010110λ=1的一个特征向量.A=020130100100231001010001023102311λ=0的一个特征向量.A99=2110110231120001000099211011023111
(12132∣100111∣010001∣001)→(123∣2000−1−2∣−210001∣001)→(120∣20−30−10∣−212001∣001)→(100∣−221010∣2−1−2001∣001)A99=(12132111001)(−2000−10000)99(12132111001)−1=(12132111001)((−2)99000(−1)990000)(−2212−1−2001)=(−298−10−299−10000)(−2212−1−2001)=(−2+2991−2992−2982100−2−2100+12−299000) \begin{aligned} &\begin{pmatrix} \frac{1}{2} & 1 & \frac{3}{2} & \bigg| & 1 & 0 & 0 \\ 1 & 1 & 1 & \bigg| & 0 & 1 & 0 \\ 0 & 0 & 1 & \bigg| & 0 & 0 & 1 \end{pmatrix} \to \begin{pmatrix} 1 & 2 & 3 & \bigg| & 2 & 0 & 0 \\ 0 & -1 & -2 & \bigg| & -2 & 1 & 0 \\ 0 & 0 & 1 & \bigg| & 0 & 0 & 1 \end{pmatrix} \\ &\to \begin{pmatrix} 1 & 2 & 0 & \bigg| & 2 & 0 & -3 \\ 0 & -1 & 0 & \bigg| & -2 & 1 & 2 \\ 0 & 0 & 1 & \bigg| & 0 & 0 & 1 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 0 & \bigg| & -2 & 2 & 1 \\ 0 & 1 & 0 & \bigg| & 2 & -1 & -2 \\ 0 & 0 & 1 & \bigg| & 0 & 0 & 1 \end{pmatrix} \\ \\ &A^{99} = \begin{pmatrix} \frac{1}{2} & 1 & \frac{3}{2} \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}^{99} \begin{pmatrix} \frac{1}{2} & 1 & \frac{3}{2} \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^{-1} \\ &= \begin{pmatrix} \frac{1}{2} & 1 & \frac{3}{2} \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} (-2)^{99} & 0 & 0 \\ 0 & (-1)^{99} & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} -2 & 2 & 1 \\ 2 & -1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} -2^{98} & -1 & 0 \\ -2^{99} & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} -2 & 2 & 1 \\ 2 & -1 & -2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -2+2^{99} & 1-2^{99} & 2-2^{98} \\ 2^{100} - 2 & -2^{100} + 1 & 2-2^{99} \\ 0 & 0 & 0 \end{pmatrix} \end{aligned} 21101102311100010001100210321220010001100210001220010321100010001220210121A99=2110110231120001000099211011023111=21101102311(2)99000(1)990000220210121=2982990110000220210121=2+29921002012992100+10229822990
(2)
分析:思路1: B100=(B2)50=(BA)50=BABABA⋯BA无法继续思路2: B100=B98B2=B98⋅BA=B99A=B97B2A=B97BAA=B98A2⋮B100=BA99思路3: B3=B2A=BAA=BA2 \begin{aligned} &分析: \\ &思路1: \ B^{100} = (B^2)^{50} = (BA)^{50} = BABABA\cdots BA\qquad无法继续 \\ &思路2: \ B^{100} = B^{98}B^2 = B^{98} \cdot BA = B^{99}A = B^{97}B^2A \\ & \quad \quad = B^{97}BAA = B^{98}A^2 \\ & \quad \quad \vdots \\ & \quad \quad B^{100} = BA^{99} \\& 思路3: \ B^3 = B^2A = BAA = BA^2\end{aligned} 分析:思路1: B100=(B2)50=(BA)50=BABABABA无法继续思路2: B100=B98B2=B98BA=B99A=B97B2A=B97BAA=B98A2B100=BA99思路3: B3=B2A=BAA=BA2
(2) B100=B98B2=⋯=BA99=(α1,α2,α3)(−2+2991−2992−2982100−2−2100+12−299000)=(β1,β2,β3)β1=(299−2)α1+(2100−2)α2β2=(1−299)α1+(−2100+1)α2β3=(2−298)α1+(2−299)α2 \begin{aligned} &(2)\ B^{100} = B^{98}B^2 = \cdots = BA^{99} = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} -2 + 2^{99} & 1 - 2^{99} & 2 - 2^{98} \\ 2^{100} - 2 & -2^{100} + 1 & 2 - 2^{99} \\ 0 & 0 & 0 \end{pmatrix} \\ &= (\beta_1, \beta_2, \beta_3) \\ \\ &\beta_1 = (2^{99} - 2)\alpha_1 + (2^{100} - 2)\alpha_2 \\ &\beta_2 = (1 - 2^{99})\alpha_1 + (-2^{100} + 1)\alpha_2 \\ &\beta_3 = (2 - 2^{98})\alpha_1 + (2 - 2^{99})\alpha_2 \end{aligned} (2) B100=B98B2==BA99=(α1,α2,α3)2+29921002012992100+10229822990=(β1,β2,β3)β1=(2992)α1+(21002)α2β2=(1299)α1+(2100+1)α2β3=(2298)α1+(2299)α2
【小结】
如果矩阵AAA可以相似对角化,则可以按照如下方法计算AnA^nAn

  1. 先求出可逆矩阵PPP及对角矩阵Λ\LambdaΛ使得P−1AP=ΛP^{-1}AP=\LambdaP1AP=Λ
  2. 由矩阵的运算法则可得A=PΛP−1A=P\Lambda P^{-1}A=PΛP1,则An=PΛnP−1A^n=P\Lambda^n P^{-1}An=PΛnP1
    ![[Pasted image 20251125064652.png]]

![[Pasted image 20251125064704.png]]

解:(1){xn+1=56xn+25(16xn+yn)yn+1=35(16xn+yn) 解: (1)\begin{cases} x_{n+1} = \dfrac{5}{6}x_n + \dfrac{2}{5}\left( \dfrac{1}{6}x_n + y_n \right) \\ y_{n+1} = \dfrac{3}{5}\left( \dfrac{1}{6}x_n + y_n \right) \end{cases} :(1)xn+1=65xn+52(61xn+yn)yn+1=53(61xn+yn) 即{xn+1=910xn+25ynyn+1=110xn+35yn 即 \begin{cases} x_{n+1} = \dfrac{9}{10}x_n + \dfrac{2}{5}y_n \\ y_{n+1} = \dfrac{1}{10}x_n + \dfrac{3}{5}y_n \end{cases} xn+1=109xn+52ynyn+1=101xn+53yn A=(9102511035) A = \begin{pmatrix} \dfrac{9}{10} & \dfrac{2}{5} \\ \dfrac{1}{10} & \dfrac{3}{5} \end{pmatrix} A=1091015253
(2) Aη1=(9102511035)(41)=(41), 1为特征值 (2)\ A\eta_1 = \begin{pmatrix} \dfrac{9}{10} & \dfrac{2}{5} \\ \dfrac{1}{10} & \dfrac{3}{5} \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \end{pmatrix},\ 1为特征值 (2) Aη1=1091015253(41)=(41), 1为特征值 Aη2=(9102511035)(−11)=(−1212), 12 为特征值 A\eta_2 = \begin{pmatrix} \dfrac{9}{10} & \dfrac{2}{5} \\ \dfrac{1}{10} & \dfrac{3}{5} \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -\dfrac{1}{2} \\ \dfrac{1}{2} \end{pmatrix},\ \dfrac{1}{2}\ 为特征值 Aη2=1091015253(11)=2121, 21 为特征值
(3) (xn+1yn+1)=A(xnyn)=AA(xn−1yn−1)=⋯=An(x1y1)=An(1212) (3)\ \begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = A\begin{pmatrix} x_n \\ y_n \end{pmatrix} = AA\begin{pmatrix} x_{n-1} \\ y_{n-1} \end{pmatrix} = \cdots = A^n\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = A^n\begin{pmatrix} \dfrac{1}{2} \\ \dfrac{1}{2} \end{pmatrix} (3) (xn+1yn+1)=A(xnyn)=AA(xn1yn1)==An(x1y1)=An2121 计算:An=(4−111)(10012)n(4−111)−1=(4−111)(100(12)n)15(11−14) 计算:A^n = \begin{pmatrix} 4 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \dfrac{1}{2} \end{pmatrix}^n \begin{pmatrix} 4 & -1 \\ 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 4 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \left( \dfrac{1}{2} \right)^n \end{pmatrix} \dfrac{1}{5} \begin{pmatrix} 1 & 1 \\ -1 & 4 \end{pmatrix} 计算:An=(4111)(10021)n(4111)1=(4111)100(21)n51(1114) =15(4+12n4−42n1−12n1+42n), (xn+1yn+1)=110(8−32n2+32n) = \dfrac{1}{5} \begin{pmatrix} 4 + \dfrac{1}{2^n} & 4 - \dfrac{4}{2^n} \\ 1 - \dfrac{1}{2^n} & 1 + \dfrac{4}{2^n} \end{pmatrix},\ \begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \dfrac{1}{10} \begin{pmatrix} 8 - \dfrac{3}{2^n} \\ 2 + \dfrac{3}{2^n} \end{pmatrix} =514+2n112n142n41+2n4, (xn+1yn+1)=10182n32+2n3
注2:设(11)=x1(41)+x2(−11), 解得x1=25, x2=35 注2: 设\begin{pmatrix} 1 \\ 1 \end{pmatrix} = x_1\begin{pmatrix} 4 \\ 1 \end{pmatrix} + x_2\begin{pmatrix} -1 \\ 1 \end{pmatrix},\ 解得x_1 = \dfrac{2}{5},\ x_2 = \dfrac{3}{5} 2:(11)=x1(41)+x2(11), 解得x1=52, x2=53
(4−1∣111∣1)→(11∣10−5∣−3)→(10∣2501∣35) \begin{pmatrix} 4 & -1 & \bigg| & 1 \\ 1 & 1 & \bigg| & 1 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & \bigg| & 1 \\ 0 & -5 & \bigg| & -3 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & \bigg| & \dfrac{2}{5} \\ 0 & 1 & \bigg| & \dfrac{3}{5} \end{pmatrix} 41111110151310015253
(xn+1yn+1)=12An(11)=12An(25(41)+35(−11))=15⋅1n(41)+310⋅12n(−11) \begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \dfrac{1}{2}A^n\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \dfrac{1}{2}A^n\left( \dfrac{2}{5}\begin{pmatrix} 4 \\ 1 \end{pmatrix} + \dfrac{3}{5}\begin{pmatrix} -1 \\ 1 \end{pmatrix} \right) = \dfrac{1}{5} \cdot 1^n\begin{pmatrix} 4 \\ 1 \end{pmatrix} + \dfrac{3}{10} \cdot \dfrac{1}{2^n}\begin{pmatrix} -1 \\ 1 \end{pmatrix} (xn+1yn+1)=21An(11)=21An(52(41)+53(11))=511n(41)+1032n1(11)

【小结】无论矩阵A\boldsymbol{A}A是否可以相似对角化,都可以按照如下方法计算Anβ\boldsymbol{A}^n\boldsymbol{\beta}Anβ

  1. 先求出A\boldsymbol{A}A的特征值和特征向量,其中Aα1=λ1α1\boldsymbol{A}\boldsymbol{\alpha}_1 = \lambda_1\boldsymbol{\alpha}_1Aα1=λ1α1Aα2=λ2α2\boldsymbol{A}\boldsymbol{\alpha}_2 = \lambda_2\boldsymbol{\alpha}_2Aα2=λ2α2⋯\cdotsAαn=λnαn\boldsymbol{A}\boldsymbol{\alpha}_n = \lambda_n\boldsymbol{\alpha}_nAαn=λnαn
  2. β\boldsymbol{\beta}β用特征向量α1\boldsymbol{\alpha}_1α1α2\boldsymbol{\alpha}_2α2⋯\cdotsαn\boldsymbol{\alpha}_nαn线性表示为β=k1α1+k2α2+⋯+knαn\boldsymbol{\beta} = k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + \cdots + k_n\boldsymbol{\alpha}_nβ=k1α1+k2α2++knαn
  3. Anβ=An(k1α1+k2α2+⋯+knαn)=k1λ1nα1+k2λ2nα2+⋯+knλnnαn\boldsymbol{A}^n\boldsymbol{\beta} = \boldsymbol{A}^n(k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + \cdots + k_n\boldsymbol{\alpha}_n) = k_1\lambda_1^n\boldsymbol{\alpha}_1 + k_2\lambda_2^n\boldsymbol{\alpha}_2 + \cdots + k_n\lambda_n^n\boldsymbol{\alpha}_nAnβ=An(k1α1+k2α2++knαn)=k1λ1nα1+k2λ2nα2++knλnnαn
    ![[Pasted image 20251125081423.png]]

?A=P−1ΛP①=PΛP−1②✓Λ=P−1AP③✓Λ=PAP−1④ \begin{aligned} &?\quad A = P^{-1}\Lambda P\quad ① \\ &= P\Lambda P^{-1}\quad ②\quad \checkmark \\ &\Lambda = P^{-1}AP\quad ③\quad \checkmark \\ &\Lambda = PAP^{-1}\quad ④ \\ \end{aligned} ?A=P1ΛP=PΛP1Λ=P1APΛ=PAP1 A(α1 α2 α3)=(Aα1 Aα2 Aα3)=(λ1α1 λ2α2 λ3α3)=(α1 α2 α3)(λ1λ2λ3)A=(α1 α2 α3)(λ1λ2λ3)(α1 α2 α3)−1 \begin{aligned} &A(\alpha_1\ \alpha_2\ \alpha_3) = (A\alpha_1\ A\alpha_2\ A\alpha_3) \\ &= (\lambda_1\alpha_1\ \lambda_2\alpha_2\ \lambda_3\alpha_3) = (\alpha_1\ \alpha_2\ \alpha_3)\begin{pmatrix} \lambda_1 \\ & \lambda_2 \\ & & \lambda_3 \end{pmatrix} \\ &A = (\alpha_1\ \alpha_2\ \alpha_3)\begin{pmatrix} \lambda_1 \\ & \lambda_2 \\ & & \lambda_3 \end{pmatrix}(\alpha_1\ \alpha_2\ \alpha_3)^{-1} \\ \end{aligned} A(α1 α2 α3)=(Aα1 Aα2 Aα3)=(λ1α1 λ2α2 λ3α3)=(α1 α2 α3)λ1λ2λ3A=(α1 α2 α3)λ1λ2λ3(α1 α2 α3)1 ① 求矩阵P,使得A=PΛP−1P为特征向量(P−1AP=Λ)② 求矩阵P,使得A=P−1ΛPP为特征向量的逆(PAP=Λ) \begin{aligned} &①\ 求矩阵P,使得A = P\Lambda P^{-1} \\ &\qquad \text{P为特征向量}\quad (P^{-1}AP = \Lambda) \\ &②\ 求矩阵P,使得A = P^{-1}\Lambda P \\ &\qquad \text{P为特征向量的逆}\quad (PAP = \Lambda) \\ \end{aligned}  求矩阵P,使得A=PΛP1P为特征向量(P1AP=Λ) 求矩阵P,使得A=P1ΛPP为特征向量的逆(PAP=Λ)
解:(1)由相似必要条件可得{x−4=y+1−2y=4x−8⇒{x=3y=−2 解: (1) 由相似必要条件可得 \begin{cases} x - 4 = y + 1 \\ -2y = 4x-8 \end{cases} \Rightarrow \begin{cases} x = 3 \\ y = -2 \end{cases} :(1)由相似必要条件可得{x4=y+12y=4x8{x=3y=2
A=P1ΛP1−1, B=P2ΛP2−1P1−1AP1=Λ=P2−1BP2P2P1−1AP1P2−1=B(P1P2−1)−1AP1P2−1=B故取 P=P1P2−1 \begin{aligned} &\boldsymbol{A} = \boldsymbol{P}_1\boldsymbol{\Lambda}\boldsymbol{P}_1^{-1},\ \boldsymbol{B} = \boldsymbol{P}_2\boldsymbol{\Lambda}\boldsymbol{P}_2^{-1} \\ &\boldsymbol{P}_1^{-1}\boldsymbol{A}\boldsymbol{P}_1 = \boldsymbol{\Lambda} = \boldsymbol{P}_2^{-1}\boldsymbol{B}\boldsymbol{P}_2 \\ &\boldsymbol{P}_2\boldsymbol{P}_1^{-1}\boldsymbol{A}\boldsymbol{P}_1\boldsymbol{P}_2^{-1} = \boldsymbol{B} \\ &(\boldsymbol{P}_1\boldsymbol{P}_2^{-1})^{-1}\boldsymbol{A}\boldsymbol{P}_1\boldsymbol{P}_2^{-1} = \boldsymbol{B} \\ &\text{故取}\ \boldsymbol{P} = \boldsymbol{P}_1\boldsymbol{P}_2^{-1} \end{aligned} A=P1ΛP11, B=P2ΛP21P11AP1=Λ=P21BP2P2P11AP1P21=B(P1P21)1AP1P21=B故取 P=P1P21
解:(2) B的特征值为2,−1,−2,A与B相似,故A的特征值为2,−1,−2.A−2E=(−4−2121−200−4)→(1120001000), (−120)为2的一个特征向量.A+E=(−1−2124−2001)→(120001000), (−210)为−1的一个特征向量.A+2E=(0−2125−2000)→(152−101−12000)→(101401−12000), (1−2−4)为−2的一个特征向量. \begin{aligned} &解: (2)\ \boldsymbol{B}的特征值为2,-1,-2,\boldsymbol{A}与\boldsymbol{B}相似,故\boldsymbol{A}的特征值为2,-1,-2. \\& \boldsymbol{A}-2\boldsymbol{E}=\begin{pmatrix} -4 & -2 & 1 \\ 2 & 1 & -2 \\ 0 & 0 & -4 \end{pmatrix}\to\begin{pmatrix} 1 & \dfrac{1}{2} & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},\ \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}为2的一个特征向量. \\& \boldsymbol{A}+\boldsymbol{E}=\begin{pmatrix} -1 & -2 & 1 \\ 2 & 4 & -2 \\ 0 & 0 & 1 \end{pmatrix}\to\begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},\ \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}为-1的一个特征向量. \\& \boldsymbol{A}+2\boldsymbol{E}=\begin{pmatrix} 0 & -2 & 1 \\ 2 & 5 & -2 \\ 0 & 0 & 0 \end{pmatrix}\to\begin{pmatrix} 1 & \dfrac{5}{2} & -1 \\ 0 & 1 & -\dfrac{1}{2} \\ 0 & 0 & 0 \end{pmatrix}\to\begin{pmatrix} 1 & 0 & \dfrac{1}{4} \\ 0 & 1 & -\dfrac{1}{2} \\ 0 & 0 & 0 \end{pmatrix},\ \begin{pmatrix} 1 \\ -2 \\ -4 \end{pmatrix}为-2的一个特征向量. \end{aligned} :(2) B的特征值为2,1,2,AB相似,A的特征值为2,1,2.A2E=4202101241002100010, 1202的一个特征向量.A+E=120240121100200010, 2101的一个特征向量.A+2E=0202501201002510121010001041210, 1242的一个特征向量.
令P1=(−1−2−1212004),P1−1AP1=(2000−1000−2) 令\boldsymbol{P_{1}} = \begin{pmatrix} -1 & -2 & -1 \\ 2 & 1 & 2 \\ 0 & 0 & 4 \end{pmatrix} , \boldsymbol{P}_1^{-1}\boldsymbol{A}\boldsymbol{P}_1 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix} P1=120210124,P11AP1=200010002B−2E=(0100−3000−4)→(010001000), (100)为2的一个特征向量B+E=(31000000−1)→(310001000), (1−30)为−1的一个特征向量B+2E=(410010000)→(100010000), (001)为−2的一个特征向量令P2=(1100−30001),P2−1AP2=(2000−1000−2) \begin{aligned} &\boldsymbol{B}-2\boldsymbol{E} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -4 \end{pmatrix} \to \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},\ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}为2的一个特征向量 \\ &\boldsymbol{B}+\boldsymbol{E} = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \to \begin{pmatrix} 3 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},\ \begin{pmatrix} 1 \\ -3 \\ 0 \end{pmatrix}为-1的一个特征向量 \\ &\boldsymbol{B}+2\boldsymbol{E} = \begin{pmatrix} 4 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix},\ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}为-2的一个特征向量 \\ &令\boldsymbol{P}_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{pmatrix} ,\boldsymbol{P}_2^{-1}\boldsymbol{A}\boldsymbol{P}_2= \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}\end{aligned} B2E=000130004000100010, 1002的一个特征向量B+E=300100001300100010, 1301的一个特征向量B+2E=400110000100010000, 0012的一个特征向量P2=100130001P21AP2=200010002
P1−1AP1= P2−1BP2P2P1−1AP1P2−1=B, (P1P2−1)−1A(P1P2−1)=B令P=P1P2−1=(−1−2121−200−4)(11300−130001)=(−113−1213−200−4) \begin{aligned} &\boldsymbol{P}_1^{-1}\boldsymbol{A}\boldsymbol{P}_1 =\ \boldsymbol{P}_2^{-1}\boldsymbol{B}\boldsymbol{P}_2 \\ &\boldsymbol{P}_2\boldsymbol{P}_1^{-1}\boldsymbol{A}\boldsymbol{P}_1\boldsymbol{P}_2^{-1} = \boldsymbol{B},\ (\boldsymbol{P}_1\boldsymbol{P}^{-1}_2)^{-1}\boldsymbol{A}(\boldsymbol{P}_1\boldsymbol{P}^{-1}_2) = \boldsymbol{B} \\ &令\boldsymbol{P} = \boldsymbol{P}_1\boldsymbol{P}_2^{-1} = \begin{pmatrix} -1 & -2 & 1 \\ 2 & 1 & -2 \\ 0 & 0 & -4 \end{pmatrix} \begin{pmatrix} 1 & \dfrac{1}{3} & 0 \\ 0 & -\dfrac{1}{3} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & \dfrac{1}{3} & -1 \\ 2 & \dfrac{1}{3} & -2 \\ 0 & 0 & -4 \end{pmatrix} \end{aligned} P11AP1= P21BP2P2P11AP1P21=B, (P1P21)1A(P1P21)=BP=P1P21=12021012410031310001=12031310124
验证
AP=(−2−2123−200−2)(−11312132004)=(−2−432453−400−8)PB=(−11312132004)(2100−1000−2)=(−2−432453−400−8) \begin{aligned} \boldsymbol{A}\boldsymbol{P} &= \begin{pmatrix} -2 & -2 & 1 \\ 2 & 3 & -2 \\ 0 & 0 & -2 \end{pmatrix} \begin{pmatrix} -1 & \dfrac{1}{3} & 1 \\ 2 & \dfrac{1}{3} & 2 \\ 0 & 0 & 4 \end{pmatrix} = \begin{pmatrix} -2 & -\dfrac{4}{3} & 2 \\ 4 & \dfrac{5}{3} & -4 \\ 0 & 0 & -8 \end{pmatrix} \\ \boldsymbol{P}\boldsymbol{B} &= \begin{pmatrix} -1 & \dfrac{1}{3} & 1 \\ 2 & \dfrac{1}{3} & 2 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix} = \begin{pmatrix} -2 & -\dfrac{4}{3} & 2 \\ 4 & \dfrac{5}{3} & -4 \\ 0 & 0 & -8 \end{pmatrix} \end{aligned} APPB=22023012212031310124=24034350248=12031310124200110002=24034350248
【小结】如果矩阵 A, B 相似且都可以相似对角化,则可以按照如下方法计算可逆矩阵 P, 使得 P−1AP=B:① 分别求出可逆矩阵 P1, P2 使得 P1−1AP1=P2−1BP2=Λ;② 由 P1−1AP1=P2−1BP2 可得 P2P1−1AP1P2−1=(P1P2−1)−1A(P1P2−1)=B, 故令 P=P1P2−1 则有 P−1AP=B。 \begin{aligned} &\text{【小结】如果矩阵 } \boldsymbol{A},\ \boldsymbol{B} \text{ 相似且都可以相似对角化,则可以按照如下方法计算可逆矩阵 } \boldsymbol{P},\\&\ \text{使得 } \boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} = \boldsymbol{B}: \\ &① \text{ 分别求出可逆矩阵 } \boldsymbol{P}_1,\ \boldsymbol{P}_2 \text{ 使得 } \boldsymbol{P}_1^{-1}\boldsymbol{A}\boldsymbol{P}_1 = \boldsymbol{P}_2^{-1}\boldsymbol{B}\boldsymbol{P}_2 = \boldsymbol{\varLambda}; \\ &② \text{ 由 } \boldsymbol{P}_1^{-1}\boldsymbol{A}\boldsymbol{P}_1 = \boldsymbol{P}_2^{-1}\boldsymbol{B}\boldsymbol{P}_2 \text{ 可得 } \boldsymbol{P}_2\boldsymbol{P}_1^{-1}\boldsymbol{A}\boldsymbol{P}_1\boldsymbol{P}_2^{-1} = (\boldsymbol{P}_1\boldsymbol{P}_2^{-1})^{-1}\boldsymbol{A}(\boldsymbol{P}_1\boldsymbol{P}_2^{-1}) = \boldsymbol{B},\\&\ \text{故令 } \boldsymbol{P} = \boldsymbol{P}_1\boldsymbol{P}_2^{-1} \text{ 则有 } \boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} = \boldsymbol{B}。 \end{aligned} 【小结】如果矩阵 A, B 相似且都可以相似对角化,则可以按照如下方法计算可逆矩阵 P, 使得 P1AP=B: 分别求出可逆矩阵 P1, P2 使得 P11AP1=P21BP2=Λ;  P11AP1=P21BP2 可得 P2P11AP1P21=(P1P21)1A(P1P21)=B, 故令 P=P1P21 则有 P1AP=B
A∼B (A与B相似)① 若A,B均可以相似对角化② 一个可,一个不可. ×③ 若两个均不可. (没考点, 只能用定义)参考87题. \begin{aligned} &\boldsymbol{A} \sim \boldsymbol{B} \ (\boldsymbol{A}与\boldsymbol{B}相似) \\ &①\ 若\boldsymbol{A},\boldsymbol{B}均可以相似对角化 \\ &②\ 一个可,一个不可.\ \times \\ &③\ 若两个均不可.\ (\text{没考点, 只能用定义}) \\ &\quad \text{参考87题.} \end{aligned} AB (AB相似) A,B均可以相似对角化 一个可,一个不可. × 若两个均不可. (没考点只能用定义)参考87.
eg: A=(1201), B=(1021)问:求所有可逆矩阵P, 使得P−1AP=B?设P=(x1x2x3x4), (1201)(x1x2x3x4)=(x1x2x3x4)(1021)(x1+2x3x2+2x4x3x4)=(x1+2x2x2x3+2x4x4){x1+2x3=x1+2x2x2+2x4=x2x3=x3+2x4x4=x4  ⟹  {x2−x3=0x4=0x4=00=0(01−10000100000000), k1(1000)+k2(0110)=(k1k2k20) \begin{aligned} &\text{eg: } \boldsymbol{A} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix},\ \boldsymbol{B} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \\ &\text{问:求所有可逆矩阵} \boldsymbol{P},\ \text{使得} \boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} = \boldsymbol{B}? \\ &\text{设} \boldsymbol{P} = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix},\ \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \\ &\begin{pmatrix} x_1 + 2x_3 & x_2 + 2x_4 \\ x_3 & x_4 \end{pmatrix} = \begin{pmatrix} x_1 + 2x_2 & x_2 \\ x_3 + 2x_4 & x_4 \end{pmatrix} \\ &\begin{cases} x_1 + 2x_3 = x_1 + 2x_2 \\ x_2 + 2x_4 = x_2 \\ x_3 = x_3 + 2x_4 \\ x_4 = x_4 \end{cases} \implies \begin{cases} x_2 - x_3 = 0 \\ x_4 = 0 \\ x_4 = 0 \\ 0 = 0 \end{cases} \\ &\begin{pmatrix} 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},\ k_1 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} k_1 \\ k_2 \\ k_2 \\ 0 \end{pmatrix} \end{aligned} eg: A=(1021), B=(1201)问:求所有可逆矩阵P, 使得P1AP=BP=(x1x3x2x4), (1021)(x1x3x2x4)=(x1x3x2x4)(1201)(x1+2x3x3x2+2x4x4)=(x1+2x2x3+2x4x2x4)x1+2x3=x1+2x2x2+2x4=x2x3=x3+2x4x4=x4x2x3=0x4=0x4=00=00000100010000100, k11000+k20110=k1k2k20
验证
(1201)(k1k2k20)=(k1+2k2k2k20)(k1k2k20)(1021)=(k1+2k2k2k20)∣k1k2k20∣=−k22≠0k2≠0 \begin{aligned} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} k_1 & k_2 \\ k_2 & 0 \end{pmatrix} &= \begin{pmatrix} k_1 + 2k_2 & k_2 \\ k_2 & 0 \end{pmatrix} \\ \begin{pmatrix} k_1 & k_2 \\ k_2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} &= \begin{pmatrix} k_1 + 2k_2 & k_2 \\ k_2 & 0 \end{pmatrix} \\ \begin{vmatrix} k_1 & k_2 \\ k_2 & 0 \end{vmatrix} &= -k_2^2 \neq 0 \\ k_2 &\neq 0 \end{aligned} (1021)(k1k2k20)(k1k2k20)(1201)k1k2k20k2=(k1+2k2k2k20)=(k1+2k2k2k20)=k22=0=0

P=(k1k2k20),k2≠0 \boldsymbol{P} = \begin{pmatrix} k_1 & k_2 \\ k_2 & 0 \end{pmatrix}, \quad k_2 \neq 0 P=(k1k2k20),k2=0

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值