简要题意:
求
∑ i = 1 n ∑ j = 1 m lcm ( i , j ) \sum_{i=1}^n \sum_{j=1}^m \operatorname{lcm}(i,j) i=1∑nj=1∑mlcm(i,j)
一言不合就推式子。
∑ i = 1 n ∑ j = 1 m lcm ( i , j ) \sum_{i=1}^n \sum_{j=1}^m \operatorname{lcm}(i,j) i=1∑nj=1∑mlcm(i,j)
= ∑ i = 1 n ∑ j = 1 m i j gcd ( i , j ) = \sum_{i=1}^n \sum_{j=1}^m \frac{ij}{\gcd(i,j)} =i=1∑nj=1∑mgcd(i,j)ij
= ∑ d = 1 min ( n , m ) 1 d ∑ i = 1 m ∑ j = 1 n i j [ gcd ( i , j ) = = d ] = \sum_{d=1}^{\min(n,m)} \frac{1}{d} \sum_{i=1}^m \sum_{j=1}^n ij [\gcd(i,j)==d] =d=1∑min(n,m)d1i=1∑mj=1∑nij[gcd(i,j)==d]
= ∑ d = 1 min ( n , m ) 1 d ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ i j d 2 [ gcd ( i , j ) = = 1 ] = \sum_{d=1}^{\min(n,m)} \frac{1}{d} \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{m}{d} \rfloor} ijd^2 [\gcd(i,j)==1] =d=1∑min(n,m)d1i=1∑⌊dn⌋j=1∑⌊dm⌋ijd2[gcd(i,j)==1]
= ∑ d = 1 min ( n , m ) d ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ [ gcd ( i , j ) = = 1 ] = \sum_{d=1}^{\min(n,m)} d \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{m}{d} \rfloor} [\gcd(i,j)==1] =d=1∑min(n,m)di=1∑⌊dn⌋j=1∑⌊dm⌋[gcd(i,j)==1]
= ∑ d = 1 min ( n , m ) d ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ i j ∑ x ∣ gcd ( i , j ) μ x = \sum_{d=1}^{\min(n,m)} d \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{m}{d} \rfloor} ij \sum_{x | \gcd(i,j)} \mu_x =d=1∑min(n,m)di=1∑⌊dn⌋j=1∑⌊dm⌋ijx∣gcd(i,j)∑μx
= ∑ d = 1 min ( n , m ) d ∑ x = 1 min ( ⌊ n d ⌋ , ⌊ m d ⌋ ) x 2 μ x s ⌊ n d x ⌋ s ⌊ m d x ⌋ = \sum_{d=1}^{\min(n,m)} d \sum_{x=1}^{\min(\lfloor \frac{n}{d} \rfloor,\lfloor \frac{m}{d} \rfloor)} x^2 \mu_x s_{\lfloor \frac{n}{dx} \rfloor} s_{\lfloor \frac{m}{dx} \rfloor} =d=1∑min(n,m)dx=1∑min(⌊dn⌋,⌊dm⌋)x2μxs⌊dxn⌋s⌊dxm⌋
其中
s x = ∑ i = 1 x i = x × ( x + 1 ) 2 s_x = \sum_{i=1}^x i = \frac{x \times (x+1)}{2} sx=i=1∑xi=2x×(x+1)
回到原式:
= ∑ T = 1 n s ⌊ n T ⌋ s ⌊ m T ⌋ ( T ∑ d ∣ T d μ T ) = \sum_{T=1}^n s_{\lfloor \frac{n}{T} \rfloor} s_{\lfloor \frac{m}{T} \rfloor} \big(T \sum_{d|T} d \mu_T \big) =T=1∑ns⌊Tn⌋s⌊Tm⌋(Td∣T∑dμT)
括号内的东西我们预处理,括号外面的直接 整除分块。(实际上没有这个必要了)
那么如何预处理呢?单独搞出这个式子。
T ∑ d ∣ T d μ T T \sum_{d|T} d \mu_T Td∣T∑dμT
T μ T ∑ d ∣ T d T \mu_T \sum_{d|T} d TμTd∣T∑d
咦?是不是很熟悉? T μ T T \mu_T TμT 我们直接预处理就可以了。考虑,令:
f i = ∑ d ∣ i d f_i = \sum_{d|i} d fi=d∣i∑d
(其实 f i f_i fi 就是 i i i 的因数之和)
那么可得:
f i × j = f i × f j ( [ gcd ( i , j ) ] = = 1 ) f_{i \times j} = f_i \times f_j \big([\gcd(i,j)]==1 \big) fi×j=fi×fj([gcd(i,j)]==1)
即 f f f 为 积性函数。
所以用线性筛预处理即可。
时间复杂度: O ( n ) O(n) O(n).
实际得分: 100 p t s 100pts 100pts.
#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e7+1;
const ll MOD=20101009;
inline int read(){char ch=getchar(); int f=1;while(ch<'0' || ch>'9') {if(ch=='-') f=-f; ch=getchar();}
int x=0;while(ch>='0' && ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x*f;}
int prime[N],mu[N],n,m;
int cnt=0; bool h[N];
ll ans=0;
inline void Euler(int n) {
mu[1]=1; for(register int i=2;i<=n;i++) {
if(!h[i]) mu[i]=MOD-i+1,prime[++cnt]=i;
for(register int j=1;j<=cnt && i*prime[j]<=n;j++) {
h[i*prime[j]]=1;
if(i%prime[j]==0) {mu[i*prime[j]]=mu[i];break;}
mu[i*prime[j]]=(1ll*mu[i]*mu[prime[j]])%MOD;
}
} for(register int i=1;i<=n;i++) mu[i]=1ll*mu[i]*i%MOD;
for(register int i=1;i<=n;i++) mu[i]=(mu[i]+mu[i-1])%MOD;
} //欧拉筛预处理
inline ll Sieve(ll n) {return (n*(n+1)>>1)%MOD;} //求 s
int main() {
Euler(N-1);
n=read(),m=read();
if(n>m) swap(n,m);
for(int l=1;l<=n;) {
int r=min(n/(n/l),m/(m/l));
ans=(ans+1ll*(mu[r]-mu[l-1]+MOD)*Sieve(n/l)%MOD*Sieve(m/l)%MOD)%MOD;
l=r+1; //整除分块
} printf("%lld\n",ans);
return 0;
}

这篇博客介绍了如何解决一道关于计算数字表格中元素最小公倍数之和的数学问题。通过推导公式,将问题简化为计算因数和与 Mobius 函数的组合,并利用积性函数的性质,采用线性筛预处理方法,实现O(n)的时间复杂度解决方案。
6183

被折叠的 条评论
为什么被折叠?



