Jzzhu and Chocolate(CF-449A)

本文介绍了一道算法题,目标是在限定次数内切割一块n*m大小的巧克力,使得切割后最小的一块巧克力面积尽可能大。文章提供了问题的解析过程及C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description

Jzzhu has a big rectangular chocolate bar that consists of n × m unit squares. He wants to cut this bar exactly k times. Each cut must meet the following requirements:

each cut should be straight (horizontal or vertical);
each cut should go along edges of unit squares (it is prohibited to divide any unit chocolate square with cut);
each cut should go inside the whole chocolate bar, and all cuts must be distinct.
The picture below shows a possible way to cut a 5 × 6 chocolate for 5 times.

Imagine Jzzhu have made k cuts and the big chocolate is splitted into several pieces. Consider the smallest (by area) piece of the chocolate, Jzzhu wants this piece to be as large as possible. What is the maximum possible area of smallest piece he can get with exactly k cuts? The area of a chocolate piece is the number of unit squares in it.

Input

A single line contains three integers n, m, k (1 ≤ n, m ≤ 109; 1 ≤ k ≤ 2·109).

Output

Output a single integer representing the answer. If it is impossible to cut the big chocolate k times, print -1.

Examples

Input

3 4 1

Output

6

Input

6 4 2

Output

8

Input

2 3 4

Output

-1

Note

In the first sample, Jzzhu can cut the chocolate following the picture below:

In the second sample the optimal division looks like this:

In the third sample, it's impossible to cut a 2 × 3 chocolate 4 times.

题意:输入 n,m,k,代表一个 n*m 的矩阵要切 k 次,问切完后最小的单元格的最大值

思路:

假设横向切了 x-1 次,纵向切了 y-1 次,那么横着就分为 x 份,纵着就分为 y 份

于是结果即为:res=(n/x)*(m/y),而题目所给范围为:1<=x<=n,1<=y<=m,(x-1)+(y-1)=k

显然:(n+m-2)<k 时无解,(n+m-2)=k 时值为 1

可以考虑先枚举 n/x 的值,那么对于固定的取值,可以选出最大的 x,使得此时 m/y 最大;然后再枚举  n/y 的值,那么对于固定的取值,可以选出最大的 y,使得此时 n/x 最大,最后取两者最大值即可

我们将 y=k+2-x 代入 res=(n/x)*(m/y) 中可得到分母是一个二元函数:-y^2+2*y+ky,那么要让原式最大,就要让分母最小,因此不需枚举 x、y 的值,直接令 x、y 分别最小即可

Source Program

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<map>
#define PI acos(-1.0)
#define E 1e-9
#define INF 0x3f3f3f3f
#define LL long long
const int MOD=1e9+7;
const int N=10+5;
const int dx[]= {-1,1,0,0};
const int dy[]= {0,0,-1,1};
using namespace std;
int main(){
    int n,m,k;
    cin>>n>>m>>k;

    LL res=0;
    if( (n-1)+(m-1)<k )//刀数多于切口数
        res=-1;
    else if( (n-1)+(m-1)==k )//刀数等于切口数
        res=1;
    else{
        LL x=min(n-1,k);//令x最小
        res=max( res, (n/(x+1))*(m/(k+1-x)) );
        LL y=min(m-1,k);//令y最小
        res=max( res, (m/(y+1))*(n/(k+1-y)) );
    }
    cout<<res<<endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值