【JZOJ 3083】塔(加强)

本文介绍了一种通过优化动态规划解决塔合并游戏问题的方法。游戏的目标是将一系列塔进行合并,使得最终形成的塔高度不下降,且操作次数最少。文章详细解释了如何利用单调队列来优化算法的时间复杂度。

Description

玩完骰子游戏之后,你已经不满足于骰子游戏了,你要玩更高级的游戏。

   今天你瞄准了下述的好玩的游戏:


   首先是主角:塔。你有N座塔一列排开。每座塔各自有高度,有可能相等。


   这个游戏就不需要地图了。


   你每次可以选择相邻的两座塔合并在一起,即这两座塔的高度叠加后变成了同一座塔。然后原本分别与这两座塔相邻的塔变得与这座新的塔相邻。


   你的目标是在使用最少的操作次数在游戏的最后获得一列塔,这些塔的高度从左到右形成一个不下降的数列。

 

抽象题意:给出一个序列,把这个序列分块,使得每块的和不下降,每块的代价为每个块内元素个数-1,求最小的代价。

Solution

很显然有两个性质:
性质1:分的块越多,最后的块的大小就越小,
性质2:块的大小越小,分的块就越多,
现要使分的块尽量多,
根据性质1,可以写出DP使:

fi=min(fj(FjAiAj)+ij1)

f为到j为止分的块数,F为以j为结尾的块的和,A为前缀和,
复杂度:O(n2)
发现过不了,
继续优化,
根据性质2,可以发现,一旦找到一个合法的j,就不用继续找下去了,
FjAiAj

移项:
Fj+AjAi

所有可以根据这个,用一个单调队列,(本题的单调队列绝对是一个异类!!!
队头是合法的,从第二个开始不合法,
随着i的增大,第二个迟早会合法的,如果第二个合法了,就把第一个删掉,
复杂度:O(n)

Code

#include<cstdio>
#include<cstdlib>
#define fo(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
typedef long long LL;
const int N=1000500;
int read(int &n)
{
    char ch=' ';int q=0,w=1;
    for(;(ch!='-')&&((ch<'0')||(ch>'9'));ch=getchar());
    if(ch=='-')w=-1,ch=getchar();
    for(;ch>='0' && ch<='9';ch=getchar())q=q*10+ch-48;n=q*w;return n;
}
int m,n,ans,M,FAIL;
int a[N];
LL f[N][2],A[N];
int qu[N];
int main()
{
    int l,r;
    read(n);
    fo(i,1,n)read(a[i]),A[i]=A[i-1]+a[i];
    qu[l=r=1]=0;
    fo(i,1,n)
    {
        while(f[qu[l+1]][1]+A[qu[l+1]]<=A[i]&&l<r)l++;
        f[i][0]=f[qu[l]][0]+i-qu[l]-1;
        f[i][1]=A[i]-A[qu[l]];
        while(l<=r&&f[qu[r]][1]+A[qu[r]]>=f[i][1]+A[i])r--;
        qu[++r]=i;
    }
    printf("%d\n",f[n][0]);
    return 0;
}
### 解题思路 题目要求解决的是一个与图相关的最小覆盖问题,通常在特定条件下可以通过状态压缩动态规划(State Compression Dynamic Programming, SCDP)来高效求解。由于状态压缩的适用条件是状态维度较小(例如K≤10),因此可以利用二进制表示状态集合,从而优化计算过程。 #### 1. 状态表示 - 使用一个整数 `mask` 表示当前选择的点集,其中第 `i` 位为 `1` 表示第 `i` 个节点被选中。 - 定义 `dp[mask]` 表示在选中 `mask` 所代表的点集后,能够覆盖的节点集合。 - 可以通过预处理每个点的邻域信息(包括自身和所有直接连接的点),快速更新状态。 #### 2. 预处理邻域 对于每个节点 `u`,预先计算其邻域范围 `neighbor[u]`,即从该节点出发一步能到达的所有节点集合。这样,在后续的状态转移过程中,可以直接使用这些信息进行合并操作。 #### 3. 状态转移 - 初始化:对每个单独节点 `u`,设置初始状态 `dp[1 << u] = neighbor[u]`。 - 转移规则:对于任意两个状态 `mask1` 和 `mask2`,如果它们没有交集,则可以通过合并这两个状态得到新的状态 `mask = mask1 | mask2`,并更新对应的覆盖范围为 `dp[mask1] ∪ dp[mask2]`。 - 在所有状态生成之后,检查是否某个状态的覆盖范围等于全集(即覆盖了所有节点)。如果是,则记录此时使用的最少节点数量。 #### 4. 最优解提取 遍历所有可能的状态,找出能够覆盖整个图的最小节点数目。 --- ### 时间复杂度分析 - 状态总数为 $ O(2^K) $,其中 `K` 是关键点的数量。 - 每次状态转移需要枚举所有可能的子集组合,复杂度为 $ O(2^K \cdot K^2) $。 - 整体时间复杂度控制在可接受范围内,适用于 `K ≤ 10~20` 的情况。 --- ### 代码实现(状态压缩 DP) ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 25; int neighbor[MAXN]; // 每个节点的邻域 int dp[1 << 20]; // dp[mask] 表示选中的点集合为 mask 时所能覆盖的点集合 int min_nodes; // 最小覆盖点数 void solve(int n, vector<vector<int>>& graph) { // 预处理每个节点的邻域 for (int i = 0; i < n; ++i) { neighbor[i] = (1 << i); // 包括自己 for (int j : graph[i]) { neighbor[i] |= (1 << j); } } // 初始化 dp 数组 memset(dp, 0x3f, sizeof(dp)); for (int i = 0; i < n; ++i) { dp[1 << i] = neighbor[i]; } // 状态转移 for (int mask = 1; mask < (1 << n); ++mask) { if (__builtin_popcount(mask) >= min_nodes) continue; // 剪枝 for (int sub = mask & (mask - 1); sub; sub = (sub - 1) & mask) { int comp = mask ^ sub; if (comp == 0) continue; int new_mask = mask; int covered = dp[sub] | dp[comp]; if (covered == (1 << n) - 1) { min_nodes = min(min_nodes, __builtin_popcount(new_mask)); } dp[new_mask] = min(dp[new_mask], covered); } } } int main() { int n, m; cin >> n >> m; vector<vector<int>> graph(n); for (int i = 0; i < m; ++i) { int u, v; cin >> u >> v; graph[u].push_back(v); graph[v].push_back(u); // 无向图 } min_nodes = n; solve(n, graph); cout << "Minimum nodes required: " << min_nodes << endl; return 0; } ``` --- ### 优化策略 - **剪枝**:当当前状态所用节点数已经超过已知最优解时,跳过后续计算。 - **提前终止**:一旦发现某个状态覆盖了全部节点,并且节点数达到理论下限,即可提前结束程序。 - **空间优化**:可以仅保存当前轮次的状态,减少内存占用。 --- ### 总结 本题通过状态压缩动态规划的方法,将原本指数级复杂度的问题压缩到可接受范围内。结合位运算技巧和预处理机制,能够高效地完成状态转移和覆盖判断操作。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值