Solution:
题意即求:
M
i
n
∑
i
=
1
n
C
i
x
i
Min\sum_{i=1}^nC_ix_i
Mini=1∑nCixi
满足约束
∑
l
j
≤
i
≤
r
j
x
i
≥
D
j
,
j
∈
[
1
,
m
]
\sum_{l_j\le i\le r_j}x_i\geq D_j,j\in[1,m]
lj≤i≤rj∑xi≥Dj,j∈[1,m]
x
i
≥
0
x_i\geq 0
xi≥0
对偶得:
M
a
x
∑
j
=
1
m
D
j
y
j
Max\sum_{j=1}^mD_jy_j
Maxj=1∑mDjyj
满足约束
∑
l
j
≤
i
≤
r
j
y
j
≤
C
i
.
i
∈
[
1
,
n
]
\sum_{l_j\le i\le r_j}y_j\le C_i.i\in [1,n]
lj≤i≤rj∑yj≤Ci.i∈[1,n]
y
j
≥
0
y_j\geq 0
yj≥0
即对于一个
C
i
C_i
Ci来说,所有包含它的区间的权值和小于它
对于每一个
[
l
,
r
]
[l,r]
[l,r]竖着填就是了
#include<bits/stdc++.h>
using namespace std;
const int RLEN=1<<20|1;
inline char gc(){
static char ibuf[RLEN],*ib,*ob;
(ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
return ib==ob?EOF:*ib++;
}
#define gc getchar
#define pb push_back
inline int read(){
char ch=gc();
int res=0,f=1;
while(!isdigit(ch))f^=ch=='-',ch=gc();
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
return f?res:-res;
}
const int N=10005,M=1005;
int n,m;
double f[M][N];
const double eps=1e-6,inf=1e18;
inline void povit(int l,int e){
double t=f[l][e];
for(int j=0;j<=n;j++)f[l][j]/=t;
for(int i=0;i<=m;i++)if(l!=i&&fabs(f[i][e])>0){
t=f[i][e],f[i][e]=0;
for(int j=0;j<=n;j++)f[i][j]-=t*f[l][j];
}
}
inline void simplex(){
while(1){
int l=0,e=0;double mn=inf;
for(int i=1;i<=n;i++)if(f[0][i]>eps){e=i;break;}
if(!e)break;
for(int i=1;i<=m;i++)if(f[i][e]>eps&&f[i][0]/f[i][e]<mn)
mn=f[i][0]/f[i][e],l=i;
povit(l,e);
}
}
int main(){
m=read(),n=read();
for(int i=1;i<=m;i++)f[i][0]=read();
for(int i=1;i<=n;i++){
int l=read(),r=read();f[0][i]=read();
for(int j=l;j<=r;j++)f[j][i]=1;
}
simplex();
cout<<(int)-f[0][0];
}