注意到其实可以把
∀
n
>
1
,
n
2
∤
g
c
d
(
i
,
j
)
\forall n>1,n^2\not |gcd(i,j)
∀n>1,n2∣gcd(i,j)
写作
∣
μ
(
g
c
d
(
i
,
j
)
)
∣
|\mu(gcd(i,j))|
∣μ(gcd(i,j))∣
然后把
l
c
m
(
i
,
j
)
lcm(i,j)
lcm(i,j)写作
i
j
/
g
c
d
(
i
,
j
)
ij/gcd(i,j)
ij/gcd(i,j)
然后就可以大力莫反了
最后推出来就是
∑
T
=
1
n
S
(
n
T
)
S
(
m
T
)
f
(
T
)
\sum_{T=1}^{n}S(\frac n T)S(\frac m T)f(T)
T=1∑nS(Tn)S(Tm)f(T)
其中
S
(
n
)
=
∑
i
=
1
n
i
,
f
(
T
)
=
∑
d
∣
T
d
∣
μ
(
d
)
∣
μ
(
T
d
)
(
T
d
)
2
S(n)=\sum_{i=1}^ni,f(T)=\sum_{d|T}d|\mu(d)|\mu(\frac Td)(\frac T d)^2
S(n)=i=1∑ni,f(T)=d∣T∑d∣μ(d)∣μ(dT)(dT)2
然后发现
f
f
f可以线筛(其实
n
l
o
g
n
nlogn
nlogn应该也可以)
f
(
1
)
=
1
,
f
(
p
)
=
p
−
p
2
,
f
(
p
2
)
=
−
p
3
,
f
(
p
k
)
=
0
(
k
>
2
)
f(1)=1,f(p)=p-p^2,f(p^2)=-p^3,f(p^k)=0(k>2)
f(1)=1,f(p)=p−p2,f(p2)=−p3,f(pk)=0(k>2)
然后就完了
#include<bits/stdc++.h>
using namespace std;
#define cs const
#define re register
#define pb push_back
#define pii pair<int,int>
#define ll long long
#define fi first
#define se second
#define bg begin
cs int RLEN=1<<20|1;
inline char gc(){
static char ibuf[RLEN],*ib,*ob;
(ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
return (ib==ob)?EOF:*ib++;
}
inline int read(){
char ch=gc();
int res=0;bool f=1;
while(!isdigit(ch))f^=ch=='-',ch=gc();
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
return f?res:-res;
}
template<class tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
template<class tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
inline int ksm(int a,int b,int res=1){
for(;b;b>>=1,a=a*a)if(b&1)res=res*a;return res;
}
cs int N=4000005;
int pr[N],tot;
int f[N];
bitset<N>vis;
inline void init(cs int len=N-5){
f[1]=1;
for(int i=2;i<=len;i++){
if(!vis[i])pr[++tot]=i,f[i]=i-i*i;
for(int p,j=1;j<=tot&&i*pr[j]<=len;j++){
p=i*pr[j],vis[p]=1;
if(i%pr[j]==0){
if((i/pr[j])%pr[j]==0)f[p]=0;
else f[p]=-f[i/pr[j]]*pr[j]*pr[j]*pr[j];
break;
}
f[p]=f[i]*f[pr[j]];
}
}
for(int i=2;i<=len;i++)f[i]+=f[i-1];
}
int n,m;
inline int s(int x){return 1ll*x*(x+1)/2;}
inline void solve(){
n=read(),m=read();
if(n>m)swap(n,m);
int ret=0;
for(int i=1,j;i<=n;i=j+1){
j=min(n/(n/i),m/(m/i));
ret=ret+s(n/i)*s(m/i)*(f[j]-f[i-1]);
}
cout<<((ret%(1<<30)+(1<<30))%(1<<30))<<'\n';
}
int main(){
#ifdef Stargazer
freopen("lx.in","r",stdin);
#endif
int T=read();init();
while(T--)solve();
}