1.功、平均值、概率
Ex:
平均值:
y1+y2+...+ynn→1b−a∫zbf(x)dx\frac{y_1+y_2+...+y_n}{n} \to \frac{1}{b-a}\int_z^bf(x)dxny1+y2+...+yn→b−a1∫zbf(x)dx
a=x0<x1<x2<...<xn=by1=f(x1),y2=f(x2),y3=f(x3)黎曼和:(y1+....+yn)Δxb−a→∫abf(x)dxb−a(Δx→∞)Δxb−a=1na=x_0<x_1<x_2<...<x_n=b\\
y_1=f(x_1),y_2=f(x_2),y_3=f(x_3)\\
黎曼和:\\
\frac{(y_1+....+y_n)\Delta x}{b-a} \to \frac{\int_a^bf(x)dx}{b-a} (\Delta x \to \infty)\\
\frac{\Delta x}{b-a}=\frac{1}{n}a=x0<x1<x2<...<xn=by1=f(x1),y2=f(x2),y3=f(x3)黎曼和:b−a(y1+....+yn)Δx→b−a∫abf(x)dx(Δx→∞)b−aΔx=n1
Ex:
f(x)=Cf(x)=Cf(x)=C求平均值。
1b−a∫abCdx=C\frac{1}{b-a}\int_a^bCdx=Cb−a1∫abCdx=C
Ex:
点在单位半圆上的平均高度
11−(−1)∗∫−111−x2dx=12∗n2=π4\frac{1}{1-(-1)}*\int_{-1}^1\sqrt{1-x^2}dx=\frac{1}{2}*\frac{n}{2}=\frac{\pi}{4}1−(−1)1∗∫−111−x2dx=21∗2n=4π
Ex:
上图弧长的平均值(0≤θ≤π)(0 \leq \theta \leq \pi)(0≤θ≤π)
1π∫0θsinθdθ=−1π∗cosθ∣0π=−1π(−2)=2π\frac{1}{\pi}\int_0^{\theta}sin \theta d \theta =-\frac{1}{\pi}*cos \theta |_0^{\pi}=\frac{-1}{\pi}(-2)=\frac{2}{\pi}π1∫0θsinθdθ=−π1∗cosθ∣0π=π−1(−2)=π2
加权平均值:
∫abf(x)w(x)dx∫abw(x)dx\frac{\int_a^bf(x)w(x)dx}{\int_a^bw(x)dx}∫abw(x)dx∫abf(x)w(x)dx
- 解释1:AVC(C)=CAVC(C)=CAVC(C)=C
∫abCw(x)dx∫abw(x)dx=C∫abw(x)dx∫abw(x)dx=C\frac{\int_a^bCw(x)dx}{\int_a^bw(x)dx}=\frac{C\int_a^bw(x)dx}{\int_a^bw(x)dx}=C∫abw(x)dx∫abCw(x)dx=∫abw(x)dxC∫abw(x)dx=C - 解释2:股票例子
10w1+20w2+30w3w1+w2+w3\frac{10w_1+20w_2+30w_3}{w_1+w_2+w_3}w1+w2+w310w1+20w2+30w3
Ex:
坩埚例子:
初始:T=0T=0T=0
最终:T=100−30yT=100-30yT=100−30y
能量= 体积 * 温度
∫01Tπx2dy=∫01(100−30y)πydy=∫01100πy−30πy2dy=50πy2−10πy3∣01=40π\int_0^1T\pi x^2dy\\ =\int_0^1(100-30y)\pi ydy\\ =\int_0^1100\pi y-30\pi y^2dy\\ =50\pi y^2-10\pi y^3|_0^1\\ =40\pi∫01Tπx2dy=∫01(100−30y)πydy=∫01100πy−30πy2dy=50πy2−10πy3∣01=40π
最后的平均温度:
∫01Tπydy∫01πydy=40ππ2=800\frac{\int_0^1T\pi y dy}{\int_0^1\pi y dy}=\frac{40 \pi}{\frac{\pi}{2}}=80^0∫01πydy∫01Tπydy=2π40π=800
平常的平均温度:
Tmax+Tmin2=100+702=850\frac{T_{max}+T_{min}}{2}=\frac{100+70}{2}=85^02Tmax+Tmin=2100+70=850
2. 概率
Ex:
0<y<1−x20<y<1-x^20<y<1−x2,使得y>12的概率y>\frac{1}{2}的概率y>21的概率
∫121(1−x2)dx∫−11(1−x2)dx=P(x>12)\frac{\int_\frac{1}{2}^1(1-x^2)dx}{\int_{-1}^{1}(1-x^2)dx}=P(x>\frac{1}{2})∫−11(1−x2)dx∫211(1−x2)dx=P(x>21)
求概率的通常的公式:
a≤x1≤x2≤b,P(x1<x<x2)=∫x1x2w(x)dx∫abw(x)dx=PartTotala \leq x_1 \leq x_2 \leq b,P(x_1<x<x_2)=\frac{\int_{x_1}^{x_2}w(x)dx}{\int_a^bw(x)dx}=\frac{Part}{Total}a≤x1≤x2≤b,P(x1<x<x2)=∫abw(x)dx∫x1x2w(x)dx=TotalPart
Ex:
靶子问题:f=Ce−r2f=Ce^{-r^2}f=Ce−r2(模型)
PART=∫r1r22πre−r2dr=−πe−r2∣r1r2=π(e−r12−e−r22)PART=Cπ(e−r12−e−r22)Whole=Cπ(e02−e−∞2)=CπPARTWHOLE=er12−er22PART=\int_{r_1}^{r_2}2\pi re^{-r^2}dr\\
=-\pi e^{-r^2}|_{r_1}^{r_2}\\
=\pi(e^{-r_1^2}-e^{-r_2^2})\\
PART=C\pi(e^{-r_1^2}-e^{-r_2^2})\\
Whole=C\pi(e^{0^2}-e^{-\infty^2})\\
=C\pi\\
\frac{PART}{WHOLE}=e^{r_1^2}-e^{r_2^2}PART=∫r1r22πre−r2dr=−πe−r2∣r1r2=π(e−r12−e−r22)PART=Cπ(e−r12−e−r22)Whole=Cπ(e02−e−∞2)=CπWHOLEPART=er12−er22
Ex:
假设在靶子旁边站着一个人。求小人被射中的概率。212∗P(2a<r<3a)=?\frac{2}{12}*P(2a<r<3a)=?122∗P(2a<r<3a)=?
P(0<r<a)=12e−02−e−a2=12e−a2=12P(2a<r<3a)=e−(2a)2−e−(3a)2=e(−a2)4−e(−a2)9=(12)4−129≈116P(0<r<a)=\frac{1}{2}\\
e^{-0^2}-e^{-a^2}=\frac{1}{2}\\
e^{-a^2}=\frac{1}{2}\\
P(2a<r<3a)=e^{-(2a)^2}-e^{-(3a)^2}\\
=e^{(-a^2)^4}-e^{(-a^2)^9}\\
=(\frac{1}{2})^4-\frac{1}{2}^9\\
\approx \frac{1}{16}P(0<r<a)=21e−02−e−a2=21e−a2=21P(2a<r<3a)=e−(2a)2−e−(3a)2=e(−a2)4−e(−a2)9=(21)4−219≈161
212∗P(2a<r<3a)=132\frac{2}{12}*P(2a<r<3a)=\frac{1}{32}122∗P(2a<r<3a)=321.
权重为:w(r)=2πcte−2w(r)=2\pi c t e^{-2}w(r)=2πcte−2