MIT_单变量微积分_31

博客围绕不定型和洛必达法则展开,通过多个实例展示了洛必达法则在求解极限问题中的应用,如limx−>1x2−1x10−1等。同时还将其与逼近法进行对比,进一步说明不同方法在处理极限问题时的特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不定型和洛必达法则

Ex 1. lim⁡x−>1x10−1x2−1,(00)不定式。\lim_{x->1} {\frac{x^{10}-1}{x^2 - 1}},(\frac{0}{0})不定式。limx>1x21x101,(00)
limx−>1x10−1x−1x2−1x−1=10x92x=102=5−−−−−−−−−−−−−−−−−分割线f(x)=x10−1f(1)=0f(x)−f(1)x−1=f′(x)∣x−>1f′(x)=10x9lim_{x->1}{\frac{\frac{x^{10}-1}{x-1}}{\frac{x^2-1}{x-1}}}\\ =\frac{10x^9}{2x}\\ =\frac{10}{2}\\ =5\\ -----------------分割线\\ f(x)=x^{10}-1\\ f(1)=0\\ \frac{f(x)-f(1)}{x-1}=f'(x)|_{x->1}\\ f'(x)=10x^9limx>1x1x21x1x101=2x10x9=210=5线f(x)=x101f(1)=0x1f(x)f(1)=f(x)x>1f(x)=10x9

总结:
limx→af(x)g(x)=lim⁡x→af(x)x−ag(x)x−a=lim⁡x→af(x)−f(a)x−a=f′(a)g′(a)(g′(a)=≠0)lim_{x \to a} \frac{f(x)}{g(x)}=\lim_{x \to a}\frac{\frac{f(x)}{x-a}}{\frac{g(x)}{x-a}}=\lim_{x \to a}\frac{f(x)-f(a)}{x-a}=\frac{f'(a)}{g'(a)}(g'(a) =\neq 0)limxag(x)f(x)=xalimxag(x)xaf(x)=xalimxaf(x)f(a)=g(a)f(a)(g(a)≠=0)

(1) 由上可知: 洛必达法则
lim⁡x→af(x)g(x)=lim⁡x→af′(x)g′(x)(f(x)=g(x)=0或±∞\lim_{x \to a}\frac{f(x)}{g(x)}=\lim_{x \to a} \frac{f'(x)}{g'(x)} (f(x) = g(x) = 0或 \pm \inftyxalimg(x)f(x)=xalimg(x)f(x)f(x)=g(x)=0±

Ex 2:lim⁡x→0sin5xsin2x=lim⁡x→05cos5x2cos2x=52\lim_{x \to 0} \frac{sin 5x}{sin2x}=\lim_{x \to 0}\frac{5cos5x}{2cos2x}=\frac{5}{2}x0limsin2xsin5x=x0lim2cos2x5cos5x=25

Ex 3:cosx−1x2∼x→0−sinx2x∼x→0−cosx2=−12\frac{cosx - 1}{x^2}\sim_{x \to0 }\frac{-sinx}{2x} \sim_{x \to0 }\frac{-cosx}{2}=\frac{-1}{2}x2cosx1x02xsinxx02cosx=21
(2)与逼近法相比较:
Ex 4: 与EX2 、Ex3对比:
sinu≈u,u≈0sin5xsin2x≈5x2x=52,x→asinu \approx u,u \approx 0\\ \frac{sin5x}{sin2x} \approx \frac{5x}{2x} =\frac{5}{2}, x \to a\\ sinuu,u0sin2xsin5x2x5x=25,xa


cosx−1x2≈x≈0(1−x22)−1x2=−x22x2=−12\frac{cosx - 1}{x^2} \approx_{x \approx 0} \frac{(1-\frac{x^2}{2}) - 1}{x^2}=\frac{\frac{-x^2}{2}}{x^2}=\frac{-1}{2}x2cosx1x0x2(12x2)1=x22x2=21

Ex 5:
lim⁡x→0+xlnx=lim⁡x→0+lnx1x=lim⁡x→0+1x−1x2=lim⁡x→0+(−x)=0\lim_{x \to 0^+}x lnx = \lim_{x \to 0^+} \frac{lnx}{\frac{1}{x}}=\lim_{x \to 0^+}{\frac{\frac{1}{x}}{\frac{-1}{x^2}}}=\lim_{x \to 0^+}(-x) = 0x0+limxlnx=x0+limx1lnx=x0+limx21x1=x0+lim(x)=0

Ex 6:
lim⁡x→∞xe−px=lim⁡x→∞xepx=lim⁡x→∞1pepx(p>0)\lim_{x \to \infty }x e^{-px}= \lim_{x \to \infty}\frac{x}{e^{px}}=\lim_{x \to \infty}\frac{1}{pe^{px}} (p>0)xlimxepx=xlimepxx=xlimpepx1(p>0)

Ex 7:
lim⁡x→∞epxx100=(lim⁡x→∞epx100x)100=(lim⁡x→∞p100epx1001)100=∞\lim_{x \to \infty} \frac{e^{px}}{x^{100}}=(\lim_{x \to \infty}{\frac{e^\frac{px}{100}}{x}})^{100}=(\lim_{x \to \infty}\frac{\frac{p}{100}e ^{\frac{px}{100}} }{1})^{100}=\inftyxlimx100epx=(xlimxe100px)100=(xlim1100pe100px)100=

Ex 8:
lnxx13∼x→∞1x13x−23=3x23−1=3x−13=13x3\frac{lnx}{x^{\frac{1}{3}}} \sim_{x \to \infty} \frac{\frac{1}{x}}{\frac{1}{3} x^{\frac{-2}{3}}} =3x^{\frac{2}{3}-1}=3x^{\frac{-1}{3}}=\frac{1}{3x^3}x31lnxx31x32x1=3x321=3x31=3x31

Ex 9:
0o=1,lim⁡x→0+xx=1xx=exlnx,xlnx=lnx1x=1x1x2=x∼00^o = 1,\lim_{x \to 0^+} x^x = 1\\ x^x = e^{xlnx},xlnx=\frac{lnx}{\frac{1}{x}}=\frac{\frac{1}{x}}{\frac{1}{x^2}}=x \sim 00o=1,x0+limxx=1xx=exlnx,xlnx=x1lnx=x21x1=x0

Ex 10:
sinxx2∼x→0cosx2x∼−sinx2∼0逼近法:x→sinx原式=xx2=1x→∞\frac{sin x}{x^2} \sim_{x \to 0} \frac{cos x}{2x} \sim \frac{-sinx}{2}\sim0\\ 逼近法:x \to sinx\\ 原式=\frac{x}{x^2}=\frac{1}{x} \to \inftyx2sinxx02xcosx2sinx0xsinx=x2x=x1

Ex 11:
x5+2x4+1x4+2→x→∞×1x51−2x+1x51x+2x5∼11x=x→∞\frac{x^5+2x^4+1}{x^4+2} \to_{x \rightarrow\infty}^{\times \frac{1}{x^ 5}} \frac{1-\frac{2}{x}+\frac{1}{x^5}}{\frac{1}{x}+\frac{2}{x^5}} \sim\frac{1}{\frac{1}{x}}=x \to\inftyx4+2x5+2x4+1x×x51x1+x521x2+x51x11=x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值