不定型和洛必达法则
Ex 1. limx−>1x10−1x2−1,(00)不定式。\lim_{x->1} {\frac{x^{10}-1}{x^2 - 1}},(\frac{0}{0})不定式。limx−>1x2−1x10−1,(00)不定式。
limx−>1x10−1x−1x2−1x−1=10x92x=102=5−−−−−−−−−−−−−−−−−分割线f(x)=x10−1f(1)=0f(x)−f(1)x−1=f′(x)∣x−>1f′(x)=10x9lim_{x->1}{\frac{\frac{x^{10}-1}{x-1}}{\frac{x^2-1}{x-1}}}\\
=\frac{10x^9}{2x}\\
=\frac{10}{2}\\
=5\\
-----------------分割线\\
f(x)=x^{10}-1\\
f(1)=0\\
\frac{f(x)-f(1)}{x-1}=f'(x)|_{x->1}\\
f'(x)=10x^9limx−>1x−1x2−1x−1x10−1=2x10x9=210=5−−−−−−−−−−−−−−−−−分割线f(x)=x10−1f(1)=0x−1f(x)−f(1)=f′(x)∣x−>1f′(x)=10x9
总结:
limx→af(x)g(x)=limx→af(x)x−ag(x)x−a=limx→af(x)−f(a)x−a=f′(a)g′(a)(g′(a)=≠0)lim_{x \to a} \frac{f(x)}{g(x)}=\lim_{x \to a}\frac{\frac{f(x)}{x-a}}{\frac{g(x)}{x-a}}=\lim_{x \to a}\frac{f(x)-f(a)}{x-a}=\frac{f'(a)}{g'(a)}(g'(a) =\neq 0)limx→ag(x)f(x)=x→alimx−ag(x)x−af(x)=x→alimx−af(x)−f(a)=g′(a)f′(a)(g′(a)≠=0)
(1) 由上可知: 洛必达法则
limx→af(x)g(x)=limx→af′(x)g′(x)(f(x)=g(x)=0或±∞\lim_{x \to a}\frac{f(x)}{g(x)}=\lim_{x \to a} \frac{f'(x)}{g'(x)} (f(x) = g(x) = 0或 \pm \inftyx→alimg(x)f(x)=x→alimg′(x)f′(x)(f(x)=g(x)=0或±∞
Ex 2:limx→0sin5xsin2x=limx→05cos5x2cos2x=52\lim_{x \to 0} \frac{sin 5x}{sin2x}=\lim_{x \to 0}\frac{5cos5x}{2cos2x}=\frac{5}{2}x→0limsin2xsin5x=x→0lim2cos2x5cos5x=25
Ex 3:cosx−1x2∼x→0−sinx2x∼x→0−cosx2=−12\frac{cosx - 1}{x^2}\sim_{x \to0 }\frac{-sinx}{2x} \sim_{x \to0 }\frac{-cosx}{2}=\frac{-1}{2}x2cosx−1∼x→02x−sinx∼x→02−cosx=2−1
(2)与逼近法相比较:
Ex 4: 与EX2 、Ex3对比:
sinu≈u,u≈0sin5xsin2x≈5x2x=52,x→asinu \approx u,u \approx 0\\
\frac{sin5x}{sin2x} \approx \frac{5x}{2x} =\frac{5}{2}, x \to a\\
sinu≈u,u≈0sin2xsin5x≈2x5x=25,x→a
cosx−1x2≈x≈0(1−x22)−1x2=−x22x2=−12\frac{cosx - 1}{x^2} \approx_{x \approx 0} \frac{(1-\frac{x^2}{2}) - 1}{x^2}=\frac{\frac{-x^2}{2}}{x^2}=\frac{-1}{2}x2cosx−1≈x≈0x2(1−2x2)−1=x22−x2=2−1
Ex 5:
limx→0+xlnx=limx→0+lnx1x=limx→0+1x−1x2=limx→0+(−x)=0\lim_{x \to 0^+}x lnx = \lim_{x \to 0^+} \frac{lnx}{\frac{1}{x}}=\lim_{x \to 0^+}{\frac{\frac{1}{x}}{\frac{-1}{x^2}}}=\lim_{x \to 0^+}(-x) = 0x→0+limxlnx=x→0+limx1lnx=x→0+limx2−1x1=x→0+lim(−x)=0
Ex 6:
limx→∞xe−px=limx→∞xepx=limx→∞1pepx(p>0)\lim_{x \to \infty }x e^{-px}= \lim_{x \to \infty}\frac{x}{e^{px}}=\lim_{x \to \infty}\frac{1}{pe^{px}} (p>0)x→∞limxe−px=x→∞limepxx=x→∞limpepx1(p>0)
Ex 7:
limx→∞epxx100=(limx→∞epx100x)100=(limx→∞p100epx1001)100=∞\lim_{x \to \infty} \frac{e^{px}}{x^{100}}=(\lim_{x \to \infty}{\frac{e^\frac{px}{100}}{x}})^{100}=(\lim_{x \to \infty}\frac{\frac{p}{100}e ^{\frac{px}{100}} }{1})^{100}=\inftyx→∞limx100epx=(x→∞limxe100px)100=(x→∞lim1100pe100px)100=∞
Ex 8:
lnxx13∼x→∞1x13x−23=3x23−1=3x−13=13x3\frac{lnx}{x^{\frac{1}{3}}} \sim_{x \to \infty} \frac{\frac{1}{x}}{\frac{1}{3} x^{\frac{-2}{3}}} =3x^{\frac{2}{3}-1}=3x^{\frac{-1}{3}}=\frac{1}{3x^3}x31lnx∼x→∞31x3−2x1=3x32−1=3x3−1=3x31
Ex 9:
0o=1,limx→0+xx=1xx=exlnx,xlnx=lnx1x=1x1x2=x∼00^o = 1,\lim_{x \to 0^+} x^x = 1\\
x^x = e^{xlnx},xlnx=\frac{lnx}{\frac{1}{x}}=\frac{\frac{1}{x}}{\frac{1}{x^2}}=x \sim 00o=1,x→0+limxx=1xx=exlnx,xlnx=x1lnx=x21x1=x∼0
Ex 10:
sinxx2∼x→0cosx2x∼−sinx2∼0逼近法:x→sinx原式=xx2=1x→∞\frac{sin x}{x^2} \sim_{x \to 0} \frac{cos x}{2x} \sim \frac{-sinx}{2}\sim0\\
逼近法:x \to sinx\\
原式=\frac{x}{x^2}=\frac{1}{x} \to \inftyx2sinx∼x→02xcosx∼2−sinx∼0逼近法:x→sinx原式=x2x=x1→∞
Ex 11:
x5+2x4+1x4+2→x→∞×1x51−2x+1x51x+2x5∼11x=x→∞\frac{x^5+2x^4+1}{x^4+2} \to_{x \rightarrow\infty}^{\times \frac{1}{x^ 5}} \frac{1-\frac{2}{x}+\frac{1}{x^5}}{\frac{1}{x}+\frac{2}{x^5}} \sim\frac{1}{\frac{1}{x}}=x \to\inftyx4+2x5+2x4+1→x→∞×x51x1+x521−x2+x51∼x11=x→∞