MIT_单变量微积分_32

反常积分

(1)
∞∞{f(x)=∞g(x)=∞f′(x)/g′(x)=L(x→a)⇒f(x)g(x)→L\frac{\infty}{\infty} \left\{\begin{matrix} f(x) = \infty\\ g(x) = \infty\\ f'(x)/g'(x) = L \end{matrix}\right.(x\to a) \Rightarrow \frac{f(x)}{g(x)} \to Lf(x)=g(x)=f(x)/g(x)=L(xa)g(x)f(x)L
(2)f(x)&lt;&lt;g(x)⇒(x→∞)f(x)g(x)→0f(x) &lt;&lt; g(x) \Rightarrow(x \to \infty) \frac{f(x)}{g(x)} \to 0f(x)<<g(x)(x)g(x)f(x)0.

Ex1.
lnx≪xp≪ex≪ex2(x→∞)lnx \ll x^p \ll e^x \ll e^{x^2}(x \to \infty)lnxxpexex2(x)
1lnx≫1xp≫1ex≫1ex2\frac{1}{lnx} \gg \frac{1}{x^p} \gg \frac{1}{e^x} \gg \frac{1}{e^{x^2}}lnx1xp1ex1ex21

(3) ∫a∞f(x)dx=limn→∞∫anf(x)dx\int_a^{\infty} f(x)dx=lim_{n \to \infty}\int_a^n f(x)dxaf(x)dx=limnanf(x)dx

Ex 2.∫0∞e−kxdx=1k\int_0^{\infty} e^{-kx}dx= \frac{1}{k}0ekxdx=k1
∫0∞e−kxdx=∫0ne−kxdx=−1ke−kx∣0n=k→∞−1ke−kn−(−1k)=1k\int_0^{\infty} e^{-kx}dx= \int_0^ne^{-kx}dx=-\frac{1}{k}e^{-kx}|_0^n=_{k\to \infty}-\frac{1}{k}e^{-kn}-(-\frac{1}{k})=\frac{1}{k}0ekxdx=0nekxdx=k1ekx0n=kk1ekn(k1)=k1
即:
∫0∞e−kxdx=−1ke−kx∣0∞=k→∞−1ke−∞−(−1k)=1k\int_0^{\infty} e^{-kx}dx=-\frac{1}{k}e^{-kx}|_0^{\infty}=_{k\to \infty}-\frac{1}{k}e^{-\infty}-(-\frac{1}{k})=\frac{1}{k}0ekxdx=k1ekx0=kk1e(k1)=k1
Ex 3.∫−∞∞e−x2dx=π\int_{-\infty}^{\infty}e^{-x^2}dx = \sqrt{\pi}ex2dx=π(博彩模型)

Ex 4.∫1∞1xdx(发散)\int_1^{\infty}\frac{1}{x}dx(发散)1x1dx()
∫1∞dxx=lnx∣1∞=∞\int_1^{\infty}\frac{dx}{x}=lnx|_1^{\infty}=\infty1xdx=lnx1=

(4)∫1∞dxxp=x−p+1−p+1∣1∞=(∞)−p+1−p+1−1−p+1={0,p&gt;1∞,p&lt;1\int_1^{\infty} \frac{dx}{x^p}=\frac{x^{-p+1}}{-p+1}|_1^{\infty}=\frac{(\infty)^{-p+1}}{-p+1}-\frac{1}{-p+1} = \left\{\begin{matrix} 0,&amp; p&gt;1 \\ \infty,&amp; p&lt;1 \end{matrix}\right.1xpdx=p+1xp+11=p+1()p+1p+11={0,,p>1p<1
总结:∫1∞dxxp,发散,p&lt;=1∫1∞dxxp,收敛,p&gt;1,(=1p−1)\int_1^{\infty}\frac{dx}{x^p} ,发散,p&lt;=1\\ \int_1^{\infty}\frac{dx}{x^p} ,收敛,p &gt; 1,(=\frac{1}{p-1})1xpdx,p<=11xpdxp>1,=p11

极限的比较

f(x) g(x)⇒x→∞∫a∞f(x)dx,∫a∞g(x)dx(两者同时收敛或发散)f(x)~g(x) \Rightarrow^{x \to \infty} \int_a^{\infty}f(x)dx,\int_a^{\infty}g(x)dx(两者同时收敛或发散)f(x) g(x)xaf(x)dx,ag(x)dx()
Ex 5. ∫0∞dxx2+10≈∫1∞dxx=lnx∣1∞=∞x2+10≈10\int_0^{\infty} \frac{dx}{\sqrt{x^2+10}} \approx \int_1^{\infty}\frac{dx}{x}=lnx|_1^{\infty}=\infty\\ \sqrt{x^2+10} \approx \sqrt{10}0x2+10dx1xdx=lnx1=x2+1010
Ex 6. ∫10∞dxx3+3≈∫10∞dxx321x3+3≈1x3=1x32\int_{10}^{\infty}\frac{dx}{\sqrt{x^3+3}} \approx \int_{10}^{\infty}\frac{dx}{x^{\frac{3}{2}}}\\ \frac{1}{\sqrt{x^3+3}} \approx \frac{1}{\sqrt{x^3}}=\frac{1}{x^{\frac{3}{2}}}10x3+3dx10x23dxx3+31x31=x231

Ex 7.∫−∞∞e−x2dx=2∫0∞exdx=2∫01e−x2dx+2∫1∞e−xdx\int_{-\infty}^{\infty}e^{-x^2}dx=2\int_0^{\infty}e^xdx=2\int_0^1e^{-x^2}dx+2\int_1^{\infty}e^{-x}dxex2dx=20exdx=201ex2dx+21exdx
***注意:***∫dxx2=−x−1∣−11=−2(是错误的)\int \frac{dx}{x^2} = -x^{-1}|_{-1}^{1}=-2(是错误的)x2dx=x111=2()
总结: 如果极限存在,函数就收敛
Ex 8.∫01dxx=∫01x−12dx=2x12∣01=2(收敛)\int_0^1\frac{dx}{\sqrt{x}}=\int_0^1x^{-\frac{1}{2}}dx=2x^{\frac{1}{2}}|_0^1=2(收敛)01xdx=01x21dx=2x2101=2()
Ex 9.∫01dxx=lnx∣01=ln1−ln0=+∞(发散)\int_0^1\frac{dx}{x} = lnx|_0^1=ln1 - ln0 = +\infty(发散)01xdx=lnx01=ln1ln0=+()
总结:1x12≪1x≪1x2(x→0+)1x12≫1x≫1x2(x→∞)\frac{1}{x^{\frac{1}{2}}} \ll \frac{1}{x} \ll \frac{1}{x^2}(x \to 0^+)\\ \frac{1}{x^{\frac{1}{2}}} \gg \frac{1}{x} \gg \frac{1}{x^2}(x \to \infty)x211x1x21(x0+)x211x1x21(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值