1.微积分第二基本定理
均值定理:
ΔF=F(b)−F(a),Δx=b−aΔF=∫abf(x)dx(FTC1)ΔFΔx=1b−a∫abf(x)dx,相等于将f平分。ΔF=Avg(F′)⋅Δx≤(maxF′)Δx(minF′)Δx≤ΔF=F′(c)Δx(MVT)≤(maxF′)Δx\Delta F=F(b)-F(a),\Delta x = b- a\\
\Delta F= \int_a^bf(x)dx(FTC1)\\
\frac{\Delta F}{\Delta x}=\frac{1}{b-a}\int_a^bf(x)dx,相等于将f平分。\\
\Delta F=Avg(F')\cdot\Delta x \leq(maxF')\Delta x\\
(minF')\Delta x \leq \Delta F=F'(c)\Delta x(MVT) \leq (maxF')\Delta xΔF=F(b)−F(a),Δx=b−aΔF=∫abf(x)dx(FTC1)ΔxΔF=b−a1∫abf(x)dx,相等于将f平分。ΔF=Avg(F′)⋅Δx≤(maxF′)Δx(minF′)Δx≤ΔF=F′(c)Δx(MVT)≤(maxF′)Δx
Ex:
F′(x)=1x+1,F(0)=1F'(x)=\frac{1}{x+1},F(0)=1F′(x)=x+11,F(0)=1,由均值定理推断可知:A<F(4)<BA<F(4)<BA<F(4)<B,A和BA和BA和B分别等于多少?
F(4)−F(0)=F′(C)∗(4−0)=1c+1⋅411+4=45≤1c+1⋅4≤4=11+0⋅495≤F(4)≤5F(4)-F(0)=F'(C)*(4-0)=\frac{1}{c+1} \cdot 4\\
\frac{1}{1+4}=\frac{4}{5} \leq \frac{1}{c+1} \cdot 4 \leq 4= \frac{1}{1+0} \cdot 4\\
\frac{9}{5} \leq F(4) \leq5F(4)−F(0)=F′(C)∗(4−0)=c+11⋅41+41=54≤c+11⋅4≤4=1+01⋅459≤F(4)≤5
- 解释-FTC1:
F(4)−F(0)=∫0411+xdx<∫04dx=4F(4)-F(0)=\int_0^4\frac{1}{1+x}dx <\int_0^4dx=4F(4)−F(0)=∫041+x1dx<∫04dx=4
F(4)−F(0)=∫0411+xdx>∫0415dx=45F(4)-F(0)=\int_0^4\frac{1}{1+x}dx > \int_0^4\frac{1}{5}dx=\frac{4}{5}F(4)−F(0)=∫041+x1dx>∫0451dx=54
几何意义:下黎曼和<黎曼和<上黎曼和下黎曼和<黎曼和<上黎曼和下黎曼和<黎曼和<上黎曼和
FTC2:
已知函数fff是连续的,G(x)=∫axf(t)dt(a≤t≤x),G′(x)=f(x),G(x)可解出方程G(x)=\int _a^xf(t)dt(a\leq t \leq x),G'(x)=f(x),G(x)可解出方程G(x)=∫axf(t)dt(a≤t≤x),G′(x)=f(x),G(x)可解出方程
{y′=fy(a)=0\left\{\begin{matrix} y'=f& \\ y(a)=0& \end{matrix}\right. {y′=fy(a)=0
Ex:
ddx∫1xdtt2=1x2\frac{d}{dx}\int_1^x\frac{dt}{t^2}=\frac{1}{x^2}dxd∫1xt2dt=x21
ΔG≈Δxf(x)\Delta G\approx \Delta xf(x)ΔG≈Δxf(x)
limΔx→0ΔGΔx=f(x)\lim_{\Delta x\to 0}{\frac{\Delta G}{\Delta x}}=f(x)limΔx→0ΔxΔG=f(x)
FTC1 证明:
F′=f,假设f连续G(x)=∫axf(t)dt由FTC2⇒G′(x)=f(x)F′(x)=G′(x)⇒F(x)=G(x)+CF(b)−F(a)=(G(b)+C)−(G(a)+C)=G(b)−G(a)=∫abf(x)dx−0F'=f,假设f连续\\
G(x)=\int_a^xf(t)dt\\
由FTC2 \Rightarrow G'(x)=f(x)\\
F'(x)=G'(x) \Rightarrow F(x)=G(x) +C\\
F(b)-F(a)=(G(b)+C)-(G(a)+C)\\
=G(b)-G(a)\\
=\int_a^bf(x)dx-0F′=f,假设f连续G(x)=∫axf(t)dt由FTC2⇒G′(x)=f(x)F′(x)=G′(x)⇒F(x)=G(x)+CF(b)−F(a)=(G(b)+C)−(G(a)+C)=G(b)−G(a)=∫abf(x)dx−0
Ex:
L′(x)=1x,L(1)=0,L(x)=∫1xdttL'(x)=\frac{1}{x},L(1)=0,L(x)=\int_1^x\frac{dt}{t}L′(x)=x1,L(1)=0,L(x)=∫1xtdt
Ex:
新函数:y′=e−x2,y(0)=0,F(x)=∫0xe−t2dty'=e^{-x^2},y(0)=0,F(x)=\int_0^xe^{-t^2}dty′=e−x2,y(0)=0,F(x)=∫0xe−t2dt
如图所示:时钟函数。y=e−x2y=e^{-x^2}y=e−x2