1.部分分式
Ex1:
∫(1x+1+3x+2)dx=ln∣x−1∣+3ln∣x+2∣+C\int(\frac{1}{x+1} + \frac{3}{x+2})dx\\
=ln|x-1| + 3ln|x+2| + C∫(x+11+x+23)dx=ln∣x−1∣+3ln∣x+2∣+C
1x−1+3x+2=x+2+3(x−1)(x−1)(x+2)=4x−1(x−1)(x+2)=4x−1x2+x−2反推,4x−1x2+x−2=4x−1(x−1)(x+2)=Ax−1+Bx+2\frac{1}{x-1}+\frac{3}{x+2}=\frac{x+2+3(x-1)}{(x-1)(x+2)}=\frac{4x-1}{(x-1)(x+2)}=\frac{4x-1}{x^2+x-2}\\ 反推,\frac{4x-1}{x^2+x-2}=\frac{4x-1}{(x-1)(x+2)}=\frac{A}{x-1}+\frac{B}{x+2}x−11+x+23=(x−1)(x+2)x+2+3(x−1)=(x−1)(x+2)4x−1=x2+x−24x−1反推,x2+x−24x−1=(x−1)(x+2)4x−1=x−1A+x+2B
求A:式子两边同时乘以x−1,得4x−1x+2=A+Bx+2(x−1),令x=1,则A=1;求B,式子两边同时乘x+2,得4x−1x−1=A(x+2)x−1+B,令x=−2,则B=3;求A: 式子两边同时乘以x-1,得\frac{4x-1}{x+2}=A+\frac{B}{x+2}(x-1),令x=1,则A=1;\\
求B,式子两边同时乘x+2,得\frac{4x-1}{x-1}=\frac{A(x+2)}{x-1}+B,令x=-2,则B=3;求A:式子两边同时乘以x−1,得x+24x−1=A+x+2B(x−1),令x=1,则A=1;求B,式子两边同时乘x+2,得x−14x−1=x−1A(x+2)+B,令x=−2,则B=3;
注意:带入数字时,不能带入相同的。
Ex2:
x2+2(x−1)2(x+2)=Ax−1+B(x−1)2+Cx+2(716=02+422+223+124)\frac{x^2+2}{(x-1)^2(x+2)}=\frac{A}{x-1}+\frac{B}{(x-1)^2}+\frac{C}{x+2}(\frac{7}{16}=\frac{0}{2}+\frac{4}{2^2}+\frac{2}{2^3}+\frac{1}{2^4})(x−1)2(x+2)x2+2=x−1A+(x−1)2B+x+2C(167=20+224+232+241)
求C:令x=−2,同时乘x+2,x2+2(x−1)2=Ax−1(x+2)+B(x−1)2(x+2)+C,C=69=23求B:令x=1,同时乘(x−1)2,x2+2x+2=Ax−1(x−1)2+B+Cx+2(x−1)2,B=1;求A时:x=≠1,因此只能带入别的数,带入x=0,则22=A−1+1+232求C:令x=-2,同时乘x+2,\frac{x^2+2}{(x-1)^2}=\frac{A}{x-1}(x+2)+\frac{B}{(x-1)^2}(x+2)+C,C=\frac{6}{9}=\frac{2}{3}\\
求B:令x=1,同时乘(x-1)^2,\frac{x^2+2}{x+2}=\frac{A}{x-1}(x-1)^2+B+\frac{C}{x+2}(x-1)^2,B=1;\\
求A时: x = \neq1,因此只能带入别的数,带入x=0,则\frac{2}{2}=\frac{A}{-1}+1+\frac{\frac{2}{3}}{2} 求C:令x=−2,同时乘x+2,(x−1)2x2+2=x−1A(x+2)+(x−1)2B(x+2)+C,C=96=32求B:令x=1,同时乘(x−1)2,x+2x2+2=x−1A(x−1)2+B+x+2C(x−1)2,B=1;求A时:x≠=1,因此只能带入别的数,带入x=0,则22=−1A+1+232
Ex3:
分子最高幂次方小于分母高。
x2(x−1)(x2+1)=Ax−1+Bx+Cx2+1求A,同乘x−1,x2x2+1=A+Bx+Cx2+1(x−1)令x=1,则A=12等式左边去分母:x2=A(x2+1)+(Bx+C)(x−1)x2的系数:1=A(12)+B,得B=12常数项:0=A(12)−C得C=12\frac{x^2}{(x-1)(x^2+1)} =\frac{A}{x-1}+\frac{Bx+C}{x^2+1}\\ 求A,同乘x-1,\frac{x^2}{x^2+1}=A+\frac{Bx+C}{x^2+1}(x-1)\\ 令x=1,则A=\frac{1}{2}\\ 等式左边去分母:\\ x^2=A(x^2+1)+(Bx+C)(x-1)\\ x^2的系数: 1=A(\frac{1}{2})+B,得B=\frac{1}{2}\\ 常数项: 0=A(\frac{1}{2})-C得C=\frac{1}{2}(x−1)(x2+1)x2=x−1A+x2+1Bx+C求A,同乘x−1,x2+1x2=A+x2+1Bx+C(x−1)令x=1,则A=21等式左边去分母:x2=A(x2+1)+(Bx+C)(x−1)x2的系数:1=A(21)+B,得B=21常数项:0=A(21)−C得C=21
Ex4:
分子幂次方比分母高。
∫x2(x−1)(x2+1)dx=∫12x−1dx+∫12xx2+1dx+∫12x2+1dx=12ln∣x−1∣+14ln∣x2+1∣+C\int\frac{x^2}{(x-1)(x^2+1)}dx=\int\frac{\frac{1}{2}}{x-1}dx+\int\frac{\frac{1}{2}x}{x^2+1}dx+\int\frac{\frac{1}{2}}{x^2+1}dx\\
=\frac{1}{2}ln|x-1|+\frac{1}{4}ln|x^2+1| +C∫(x−1)(x2+1)x2dx=∫x−121dx+∫x2+121xdx+∫x2+121dx=21ln∣x−1∣+41ln∣x2+1∣+C
x3(x−1)(x+2)=x3x2+x−2=x−1+3x−2x2+x−2\frac{x^3}{(x-1)(x+2)}=\frac{x^3}{x^2+x-2}=x-1+\frac{3x-2}{x^2+x-2}(x−1)(x+2)x3=x2+x−2x3=x−1+x2+x−23x−2
下图求商、求余数的方法。
1.部分积分总结:
(1) P(x)Q(x)=quotient(商)+P(x)Q(x)(余数)R(x)(最高阶小于12)(x+2)4(x2+2x+3)(x2+4)3=A1x+2+A2(x+2)2+A3(x+2)3+A4(x+2)4+B0x+C0x2+2x+3+B1x+C1x2+4+B2x+C2(x2+4)2+B3x+C3(x2+4)2=12个未知数\frac{P(x)}{Q(x)}=quotient(商)+\frac{P(x)}{Q(x)}(余数)\\
\frac{R(x)(最高阶小于12)}{(x+2)^4(x^2+2x+3)(x^2+4)^3}=\frac{A_1}{x+2}+\frac{A_2}{(x+2)^2}+\frac{A_3}{(x+2)^3}+\frac{A_4}{(x+2)^4}\\+\frac{B_0x+C_0}{x^2+2x+3}+\frac{B_1x+C_1}{x^2+4}+\frac{B_2x+C_2}{(x^2+4)^2}+\frac{B_3x+C_3}{(x^2+4)^2}\\
=12个未知数Q(x)P(x)=quotient(商)+Q(x)P(x)(余数)(x+2)4(x2+2x+3)(x2+4)3R(x)(最高阶小于12)=x+2A1+(x+2)2A2+(x+2)3A3+(x+2)4A4+x2+2x+3B0x+C0+x2+4B1x+C1+(x2+4)2B2x+C2+(x2+4)2B3x+C3=12个未知数
(2)对上述式子进行积分时,分别处理各个部分:
e.g
:∫x(x2+4)3dx=−14(x2+4)−2+C\int\frac{x}{(x^2+4)^3}dx=-\frac{1}{4}(x^2+4)^{-2}+C∫(x2+4)3xdx=−41(x2+4)−2+C
e.g:
∫dx(x2+4)3令x=2tanu,dx=2sec2du=∫2sec2u(4sec2u)3du=∫du32sec4u=132∫cos4udu=132∫(1+cos2u2)2du=...\int\frac{dx}{(x^2+4)^3}\\
令x=2tanu,dx=2sec^2du\\
=\int\frac{2sec^2u}{(4sec^2u)^3}du=\int\frac{du}{32sec^4u}\\
=\frac{1}{32}\int cos^4udu\\
=\frac{1}{32}\int(\frac{1+cos2u}{2})^2du=...∫(x2+4)3dx令x=2tanu,dx=2sec2du=∫(4sec2u)32sec2udu=∫32sec4udu=321∫cos4udu=321∫(21+cos2u)2du=...
e.g:
∫dxx2+2x+3=∫dx(x+1)2+2=tan−1x+12\int\frac{dx}{x^2+2x+3}=\int\frac{dx}{(x+1)^2+2}=tan^{-1}{\frac{x+1}{\sqrt{2}}}∫x2+2x+3dx=∫(x+1)2+2dx=tan−12x+1