指数与对数
1. 指数
符号:
a>0时,a0=1,a1=a,a2=a⋅a.a >0时, a^0 = 1, a^1 = a, a^2 = a\cdot a.a>0时,a0=1,a1=a,a2=a⋅a.
基础公式:
ax1+x2=ax1⋅ax2,(ax1)x2=ax1x2a^{x_1+x_2} = a^{x_1}\cdot a^{x_2},{(a^{x_1})}^{x_2}=a^{x_1x_2}ax1+x2=ax1⋅ax2,(ax1)x2=ax1x2.
几何图形:
Ex:
求ddxax等于多少?\frac{d}{dx}{a^x}等于多少?dxdax等于多少?
dd xax=limΔx→0ax+Δx−axΔx=axlimΔx→0aΔx−1Δx\frac{d}{d\space x}{a^x}= \lim_{\Delta x \to 0}\frac{a^{x+\Delta x }-a^x}{\Delta x}\\
=a^x \lim_{\Delta x \to 0}\frac{a^{\Delta x } - 1}{\Delta x}d xdax=Δx→0limΔxax+Δx−ax=axΔx→0limΔxaΔx−1
令M(a)=limΔx→0aΔx−1Δx,则dd xax=M(a)axM(a)= \lim_{\Delta x \to 0 }\frac{a^{\Delta x} - 1}{\Delta x},则\frac{d}{d\space x} a^x=M(a)a^xM(a)=limΔx→0ΔxaΔx−1,则d xdax=M(a)ax.
因此,x=0时,dd xax=M(a)x=0时,\frac{d}{d\space x}a^x=M(a)x=0时,d xdax=M(a),得出M(a)M(a)M(a)是所有指数函数在x=0x=0x=0是的斜率。
假设M(e)=1M(e) = 1M(e)=1.则dd xex=ex\frac{d}{d \space x}e^x=e^xd xdex=ex,符合上述结论ddxex∣x=0=1\frac{d}{dx}e^x|_{x=0}= 1dxdex∣x=0=1
- 为什么e存在?
证明:
f(x)=2x,f(0)′=M(2)扩展k倍后得出,f(kx)=2kx=(2k)x=bx,b=2kddxbx=ddxf(kx)=kf′(kx)ddxbx∣x=0=kf′(0)=kM(2)b=e→k=1M(2)f(x)=2^x,f(0)'= M(2)
\\扩展k倍后得出,
\\f(kx) = 2^{kx}=(2^k)^x=b^x,b=2^k
\\\frac{d}{dx}b^x=\frac{d}{dx}f(kx)=kf'(kx)
\\\frac{d}{dx}b^x|_{x=0}=kf'(0)=kM(2)
\\b=e\rightarrow k =\frac{1}{M(2)}f(x)=2x,f(0)′=M(2)扩展k倍后得出,f(kx)=2kx=(2k)x=bx,b=2kdxdbx=dxdf(kx)=kf′(kx)dxdbx∣x=0=kf′(0)=kM(2)b=e→k=M(2)1
Proof 1
:
(elna)x=ax,则ddxexlna=lna⋅exlna=lna⋅ax(e^{lna})^x=a^x,则\\
\frac{d}{dx}e^{xlna}=lna\cdot e^{xlna}\\
=lna\cdot a^x(elna)x=ax,则dxdexlna=lna⋅exlna=lna⋅ax
所以:M(a)=lnaM(a)=lnaM(a)=lna
Proof 2
对数微分法
令u=axu=a^xu=ax
lnu=xlnau′u=ln′u=lnau′=ulnaddxax=axlnalnu=xlna\\
\frac{u'}{u}=ln'u=lna\\
u'=ulna\\
\frac{d}{dx}a^x=a^xlnalnu=xlnauu′=ln′u=lnau′=ulnadxdax=axlna
2. 自然对数
符号:
w=lnx,y=ex⇔x=lnyw=lnx,y=e^x \Leftrightarrow x=lnyw=lnx,y=ex⇔x=lny
性质:
ln(x1∗x2)=lnx1+lnx2,ln1=0,lne=1ln(x_1*x_2)=lnx_1+lnx_2,ln1= 0,lne = 1ln(x1∗x2)=lnx1+lnx2,ln1=0,lne=1
几何图形:
Ex:
求lnxlnxlnx的导数(已知exe^xex的导数求你函数的导数)?
w=lnx,ew=x,elnx=xw = lnx, e^w=x, e^{lnx}=xw=lnx,ew=x,elnx=x
ddxew=ddxx=1ddwewddxw=1ewddxw=1w′=1eww′=1xln′x=1x\frac{d}{dx}e^w=\frac{d}{dx}x=1\\
\frac{d}{dw}e^w\frac{d}{dx}w=1\\
e^w\frac{d}{dx}w=1\\
w'=\frac{1}{e^w}\\
w'=\frac{1}{x}\\
ln'x=\frac{1}{x}dxdew=dxdx=1dwdewdxdw=1ewdxdw=1w′=ew1w′=x1ln′x=x1
此时,再去求ddxax\frac{d}{dx}a^xdxdax的导数?。
2.1 对数微分法
Ex
求ddxlnu=?\frac{d}{dx}lnu= ?dxdlnu=?
ddxlnu=ddulnuddxu=1u⋅dudx=u′u\frac{d}{dx}lnu=\frac{d}{du}lnu\frac{d}{dx}u\\
=\frac{1}{u}\cdot\frac{du}{dx}\\
=\frac{u'}{u}dxdlnu=dudlnudxdu=u1⋅dxdu=uu′
所以ddxlnu=u′u\frac{d}{dx}lnu=\frac{u'}{u}dxdlnu=uu′
2.2 变动的指数函数求导
Ex:
v=xx,lnv=xlnxv=x^x,lnv=xlnxv=xx,lnv=xlnx
ln′v=lnx+x⋅1xv′v=1+lnxv′=v(1+lnx)ddxxx=xx(1+lnx)ln'v=lnx+x\cdot\frac{1}{x}\\
\frac{v'}{v}=1+lnx\\
v'=v(1+lnx)\\
\frac{d}{dx}x^x=x^x(1+lnx)ln′v=lnx+x⋅x1vv′=1+lnxv′=v(1+lnx)dxdxx=xx(1+lnx)
Ex
求limn→∞(1+1n)n=?\lim_{n \rightarrow \infty}(1 + \frac{1}{n})^n=?limn→∞(1+n1)n=?
提示:1n=Δx→0\frac{1}{n}= \Delta x\to 0n1=Δx→0
ln((1+1n))=nln(1+1n)=1Δxln(1+Δx)=1Δxln(1+Δx)−ln1=ddxlnx∣x=1=1ln( (1+\frac{1}{n}))=nln(1+\frac{1}{n})\\
=\frac{1}{\Delta x}ln(1+\Delta x)\\
=\frac{1}{\Delta x}ln(1+\Delta x)-ln1\\
=\frac{d}{dx}lnx|_{x=1}=1ln((1+n1))=nln(1+n1)=Δx1ln(1+Δx)=Δx1ln(1+Δx)−ln1=dxdlnx∣x=1=1
Ex
求证ddxxr=rxr−1求证 \frac{d}{dx}x^r=rx^{r-1}求证dxdxr=rxr−1
Proof 1:
xr=erlnxx^r=e^{rlnx}xr=erlnx
ddxxr=ddxerlnx=erlnx⋅rx=rxr−1\frac{d}{dx}x^r=\frac{d}{dx}e^{rlnx}\\
=e^{rlnx}\cdot \frac{r}{x}\\
=rx^{r-1}dxdxr=dxderlnx=erlnx⋅xr=rxr−1
Proof 2
u=xr,lnu=rlnxu=x^r,lnu=rlnxu=xr,lnu=rlnx
u′u=ln′u=rxu′=u⋅rx=rxr−1\frac{u'}{u}=ln'u=\frac{r}{x}\\
u'=u\cdot\frac{r}{x}\\
=rx^{r-1}uu′=ln′u=xru′=u⋅xr=rxr−1