A guide to connecting Matlab with OpenCV

本文介绍如何在Matlab中使用OpenCV进行图像处理,包括配置环境、编译MEX文件及两个示例:加载并平滑图像,以及通过Matlab变量输入输出图像。

A guide to connecting Matlab with OpenCV


from: https://sites.google.com/site/georgeevangelidis/matlab_opencv


This webpage provides a short guide to connecting Matlab with OpenCV. 

Matlab provides a MEX environment in order to write C functions instead of M-files. Recall that MEX (Matlab-EXecutable) files are dynamically linked subroutines from C/C++ code (or Fortran code) that, when compiled, can be run from within Matlab like M-files. Hence, MEX environment offers a way to call your custom C/C++ routines as if they were Matlab built-in function. A detailed MEX Guide is offered by MathWorks HERE

The following description presupposes that, except for Matlab, OpenCV is installed in your system. Note that connection has been verified in a 64-bit machine with Win7 (cl compiler of VC++ 2008), OpenCV2.1 and 32-bit Matlab R2009b. If you have installed a 64-bit Matlab version, try to use OpenCV 2.3 (or 2.3.1) that offers a prebuilt library for both 32-bit and 64-bit systems. Otherwise you sould re-build the libraries from source-code using the proper generator (32-bit or 64 bit). Note that 32-bit Matlab works in 64-bit machines as well.

I provide below two examples of MEX-files that use OpenCV functions. The first example is the simplest case where no input/output arguments are required. For example, image loading is called from within the function and the MEX file returns nothing (it just displays the result). The second case is more interesting since input and output arguments are Matlab variables. The Sun Peng's types convertor that provides bidirectional conversion between C/C++ (OpenCV)types and matlab matrices is used by this case.

Example 1: A simple MEX file without input/output arguments that uses simple OpenCV modules


/*******************************************************************
 This is a simple MEX file. It just calls openCV functions for loading,
smothing and diaplaying the results
********************************************************************/
 
#include <stdio.h>
#include <stdlib.h>
#include <opencv/cv.h>
#include <opencv/highgui.h>
 
#include "mex.h"
 
int smoothImage(char* filename){
 
    //load the image
    IplImage* img = cvLoadImage(filename);
    if(!img){
        printf("Cannot load image file: %s\n",filename);
    return -1;
    }
 
    //create another image
    IplImage* img_smooth = cvCloneImage(img);
 
    //smooth the image img and save the result to img_smooth
    cvSmooth(img, img_smooth, CV_GAUSSIAN, 5, 5);
 
    // create windows to show images
    cvNamedWindow("Original Image", CV_WINDOW_AUTOSIZE);
    cvMoveWindow("Original Image", 100, 100);
    cvNamedWindow("Smoothed Image", CV_WINDOW_AUTOSIZE);
    cvMoveWindow("Smoothed Image", 400, 400);
 
    // show the images
    cvShowImage("Original Image", img );
    cvShowImage("Smoothed Image", img_smooth );
 
    // wait for a key
    cvWaitKey(0);
 
    //destroy windows
    cvDestroyWindow("Original Image");
    cvDestroyWindow("Smoothed Image");
 
    //release images
    cvReleaseImage(& img);
    cvReleaseImage(& img_smooth);
 
    return 0;
};
 
void mexFunction(int nlhs, mxArray* plhs[], int nrhs, const mxArray* prhs[]){
    if (nrhs != 0) {
        mexErrMsgTxt("Do not give input arguments.");
    }
    if (nlhs != 0) {
        mexErrMsgTxt("Do not give output arguments.");
    }
    char *name = "cameraman.png";
    smoothImage(name);
}

Let us suppose that the above code is saved to  displayImage.cpp file. Since this file makes use of OpenCV header files, the compiler must be informed with the appropriate include directories. Moreover, in order to produce the executable file, the necessary libraries should be given.

There are two ways to define the required compilation flags:

1. by pre-editing the MEXOPTS.BAT file

2. by defining paths and libraries with the mex command


By editing the MEXOPTS.BAT file 

Note: After Matlab R2014, mexopts.bat file has been replaced by an xml file, e.g. mex_C++_maci64.xml for setting C++ compiler on Mac 64bit. In what follows, mexopts.bat file has been considered.

When you choose a compiler after running mex -setup an appropriate batch file is created containing all required settings the compilation needs. This is the file mexopts.ba t and in order to find it, type in Matlab Command Window:

>> fullfile(prefdir,'mexopts.bat')

Edit the above file and follow the next steps:
1. set the OpenCV path based on your installation, i.e.
SET OCVDIR=C:\OpenCV2.1

2. Find the INCLUDE variable definition (SET INCLUDE) and add the path that contains the OpenCV include folder (the folder that contains the header files cv.h, cxcore.h etc)
%OCVDIR%\include\opencv
%OCVDIR%\include

3. Find the LIB variable definition (SET LIB) and add the path that contains the OpenCV libraries (*.lib files)
%OCVDIR%\lib

4. Find the LINKFLAGS variable definition (SET LINKFLAGS) and add the standard .lib files of OpenCV (here of OpenCV 2.1)
cv210.lib
cxcore210.lib
highgui210.lib
cxcore210.lib

After editing, just run

>> mex displayImage.cpp

and the file displayImage.mexw32 (or *.mexw64) will be created. Then, you can call the Matlab function displayImage without arguments and it will show the image that is loaded within the source (here is the image cameraman.png).

By defining paths and libs with the mex command

Alternatively, you can define the paths and libraries anytime you call the mex command. For example, say that your source file needs the header files cv.h, highgui.h and cxcore.h as above. Then you need to define the include directory using the flag -I and the three .lib files.

>> OCVRoot = C:\OpenCV2.1;
>> IPath = ['-I',fullfile(OCVRoot,'include')];
>> LPath = fullfile(OCVRoot, 'lib');
>> lib1 = fullfile(LPath,'cv210d.lib');
>> lib2 = fullfile(LPath,'cxcore210d.lib');
>> lib3 = fullfile(LPath,'highgui210d.lib');

>> mex('displayImage.cpp', Ipath, lib1, lib2, lib3);

Then, you can show the image in Matlab as described above.

Example 2: A MEX file with input/output arguments that uses OpenCV

I consider the above example of image smoothing but now the input and output images are matlab variables. A Gaussian filter is adopted, the size of which is given with two more input parameters (height, width). As I mentioned above, I make use of Sun Peng's type convertor to switch between mxArray and IplImage structures or other C/C++ data types (find HERE only the appropriate files).

/*******************************************************************
 This is a simple MEX file that accepts as inputs an image and the
 size of a Gausian filter(two parameters). Then it applies the filter
 to the image by calling the OpenCV function cvSmooth and returns the 
 filtered image to a matlab variable.
********************************************************************/

#include <opencv/cv.h>
#include <opencv/highgui.h>
#include <opencv/cxcore.h>

#ifndef HAS_OPENCV
#define HAS_OPENCV
#endif

#include "mex.h"
#include "mc_convert.h"
#include "mc_convert.cpp"

void mexFunction(int nlhs, mxArray *plhs[], int nrhs,
        const mxArray *prhs[]) {
    
    //Read Matlab image and load it to an IplImage struct
    IplImage* inputImg = mxArr_to_new_IplImage(prhs[0]);
    
    //Read the filter parameters
    double filterHeight, filterWidth;
    mat_to_scalar (prhs[1], &filterHeight);
    mat_to_scalar (prhs[2], &filterWidth);
            
    //smooth the input image and save the result to outputImg
    IplImage* outputImg = cvCloneImage(inputImg);
    cvSmooth(inputImg, outputImg, CV_GAUSSIAN, filterWidth, filterHeight);
    
    //Return output image to mxArray (Matlab matrix)
    plhs[0] = IplImage_to_new_mxArr(outputImg);
    cvReleaseImage(&inputImg);
    cvReleaseImage(&outputImg);
    
}

Note that Matlab-to-OpenCV convertor needs to define the symbol name HAS_OPENCV to the C preprocessor. I define it in the source code, but one can either add the switch -DHAS_OPENCV to mex command or edit the COMPFLAGS definition in MEXOPTS.BAT (find the SET COMPFLAGS line) and add the /DHAS_OPENCV flag.

Given that the source is saved to the file smoothImage.cpp, you just need to compile it and run it. The command

>> mex smoothImage.cpp

will create the file smoothImage.mexw32. Then, you can run the Matlab function as follows

>> im = imread('cameraman.png');
>> filterHeight = 7;
>> filterWidth = 7;
>> outImage = smoothImage(im, filterHeight, filterWidht);

Good Luck!

Contact

For any bugs, questions or help, please contact the author.
Georgios Evangelidis,
e-mail: george dot<delete> evangelidis at gmail <delete>dot com
内容概要:本文设计了一种基于PLC的全自动洗衣机控制系统内容概要:本文设计了一种,采用三菱FX基于PLC的全自动洗衣机控制系统,采用3U-32MT型PLC作为三菱FX3U核心控制器,替代传统继-32MT电器控制方式,提升了型PLC作为系统的稳定性与自动化核心控制器,替代水平。系统具备传统继电器控制方式高/低水,实现洗衣机工作位选择、柔和过程的自动化控制/标准洗衣模式切换。系统具备高、暂停加衣、低水位选择、手动脱水及和柔和、标准两种蜂鸣提示等功能洗衣模式,支持,通过GX Works2软件编写梯形图程序,实现进洗衣过程中暂停添加水、洗涤、排水衣物,并增加了手动脱水功能和、脱水等工序蜂鸣器提示的自动循环控制功能,提升了使用的,并引入MCGS组便捷性与灵活性态软件实现人机交互界面监控。控制系统通过GX。硬件设计包括 Works2软件进行主电路、PLC接梯形图编程线与关键元,完成了启动、进水器件选型,软件、正反转洗涤部分完成I/O分配、排水、脱、逻辑流程规划水等工序的逻辑及各功能模块梯设计,并实现了大形图编程。循环与小循环的嵌; 适合人群:自动化套控制流程。此外、电气工程及相关,还利用MCGS组态软件构建专业本科学生,具备PL了人机交互C基础知识和梯界面,实现对洗衣机形图编程能力的运行状态的监控与操作。整体设计涵盖了初级工程技术人员。硬件选型、; 使用场景及目标:I/O分配、电路接线、程序逻辑设计及组①掌握PLC在态监控等多个方面家电自动化控制中的应用方法;②学习,体现了PLC在工业自动化控制中的高效全自动洗衣机控制系统的性与可靠性。;软硬件设计流程 适合人群:电气;③实践工程、自动化及相关MCGS组态软件与PLC的专业的本科生、初级通信与联调工程技术人员以及从事;④完成PLC控制系统开发毕业设计或工业的学习者;具备控制类项目开发参考一定PLC基础知识。; 阅读和梯形图建议:建议结合三菱编程能力的人员GX Works2仿真更为适宜。; 使用场景及目标:①应用于环境与MCGS组态平台进行程序高校毕业设计或调试与运行验证课程项目,帮助学生掌握PLC控制系统的设计,重点关注I/O分配逻辑、梯形图与实现方法;②为工业自动化领域互锁机制及循环控制结构的设计中类似家电控制系统的开发提供参考方案;③思路,深入理解PL通过实际案例理解C在实际工程项目PLC在电机中的应用全过程。控制、时间循环、互锁保护、手动干预等方面的应用逻辑。; 阅读建议:建议结合三菱GX Works2编程软件和MCGS组态软件同步实践,重点理解梯形图程序中各环节的时序逻辑与互锁机制,关注I/O分配与硬件接线的对应关系,并尝试在仿真环境中调试程序以加深对全自动洗衣机控制流程的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值