Real-time Expression Transfer for Facial Reenactment

本文介绍了一种实时面部表情迁移方法,能将源视频中的表情实时应用于目标视频中的人物,实现表情的即时控制与匹配。该技术通过精确捕捉源与目标人物的表情变化,利用参数空间差异进行表情同步,并通过细致的光照与着色处理确保合成效果逼真。

Real-time Expression Transfer for Facial Reenactment

SGASIA 2015

J. Thies 1M. Zollhöfer 2M. Nießner 3L. Valgaerts 2M. Stamminger 1C. Theobalt 2
1 University of Erlangen-Nuremberg2 Max Planck Institute for Informatics 3 Stanford University


Abstract

We present a method for the real-time transfer of facial expressions from an actor in a source video to an actor in a target video, thus enabling the ad-hoc control of the facial expressions of the target actor. The novelty of our approach lies in the transfer and photo-realistic re-rendering of facial deformations and detail into the target video in a way that the newly-synthesized expressions are virtually indistinguishable from a real video. To achieve this, we accurately capture the facial performances of the source and target subjects in real-time using a commodity RGB-D sensor. For each frame, we jointly fit a parametric model for identity, expression, and skin reflectance to the input color and depth data, and also reconstruct the scene lighting. For expression transfer, we compute the difference between the source and target expressions in parameter space, and modify the target parameters to match the source expressions. A major challenge is the convincing re-rendering of the synthesized target face into the corresponding video stream. This requires a careful consideration of the lighting and shading design, which both must correspond to the real-world environment. We demonstrate our method in a live setup, where we modify a video conference feed such that the facial expressions of a different person (e.g., translator) are matched in real-time.


PaperVideoTalk

Video


Bibtex

 
@article{thies2015realtime,
   title     = {Real-time Expression Transfer for Facial Reenactment},
   author    = {Thies, J. and Zollh{\"o}fer, M. and Nie{\ss}ner, M. and Valgaerts, L. and Stamminger, M. and Theobalt, C.},
   journal   = {ACM Transactions on Graphics (TOG)},
   publisher = {ACM},
   volume    = {34},
   number    = {6},
   year      = {2015}
}
		
YOLO - FER是一种基于YOLOv5和轻量级CNN的实时面部表情识别系统。该系统提出了一种基于YOLOv和CNN的混合架构,以实现端到端的面部表情检测与分类[^1]。 在定位人脸区域方面,系统采用改进的YOLOv5模型,能够较为精准地找出图像或视频中的人脸位置。在提取表情特征时,结合了轻量化CNN模型,例如MobileNet或EfficientNet,这些轻量级模型在保证一定性能的同时,能减少计算量和资源消耗,便于实现实时处理[^1]。 该系统支持对7类基本表情进行分类,分别是愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性,具备较为广泛的表情识别能力[^1]。 在数据集的选用上,使用了FER2013和AffectNet,并且通过数据增强的手段,如旋转、翻转、亮度调整等操作,提升了模型的泛化能力,使其在不同场景和条件下都能有较好的表现[^1]。 系统基于Python开发,并集成了PyTorch框架,为用户提供了完整的训练、测试及部署方案,还支持实时视频流处理,在准确率和速度上优于传统方法,可应用于智能监控、情感分析等多个实际场景中[^1]。 ```python # 以下为简单示意代码,非完整实现 import torch import cv2 # 加载YOLOv5模型 yolov5_model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # 加载轻量级CNN模型(示例) light_cnn_model = torch.load('light_cnn_model.pth') # 读取视频 cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() if not ret: break # 使用YOLOv5检测人脸 results = yolov5_model(frame) faces = results.xyxy[0].cpu().numpy() for face in faces: x1, y1, x2, y2 = map(int, face[:4]) face_img = frame[y1:y2, x1:x2] # 预处理人脸图像 # ... # 使用轻量级CNN进行表情分类 with torch.no_grad(): input_tensor = torch.from_numpy(face_img).unsqueeze(0).float() output = light_cnn_model(input_tensor) _, predicted = torch.max(output.data, 1) emotion = ['愤怒', '厌恶', '恐惧', '快乐', '悲伤', '惊讶', '中性'][predicted.item()] # 在图像上绘制框和表情标签 cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.putText(frame, emotion, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2) cv2.imshow('YOLO - FER', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值