图像特征检测(Image Feature Detection)
作者:王先荣
前言
图像特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。本文主要探讨如何提取图像中的“角点”这一特征,及其相关的内容。而诸如直方图、边缘、区域等内容在前文中有所提及,请查看相关文章。OpenCv(EmguCv)中实现了多种角点特征的提取方法,包括:Harris角点、ShiTomasi角点、亚像素级角点、SURF角点、Star关键点、FAST关键点、Lepetit关键点等等,本文将逐一介绍如何检测这些角点。在此之前将会先介绍跟角点检测密切相关的一些变换,包括Sobel算子、拉普拉斯算子、Canny算子、霍夫变换。另外,还会介绍一种广泛使用而OpenCv中并未实现的SIFT角点检测,以及最近在OpenCv中实现的MSER区域检测。所要讲述的内容会很多,我这里尽量写一些需要注意的地方及实现代码,而参考手册及书本中有的内容将一笔带过或者不会提及。
Sobel算子
Sobel算子用多项式计算来拟合导数计算,可以用OpenCv中的cvSobel函数或者EmguCv中的Image<TColor,TDepth>.Sobel方法来进行计算。需要注意的是,xorder和yorder中必须且只能有一个为非零值,即只能计算x方向或者y反向的导数;如果将方形滤波器的宽度设置为特殊值CV_SCHARR(-1),将使用Scharr滤波器代替Sobel滤波器。
使用Sobel滤波器的示例代码如下:
//
Sobel算子
private
string
SobelFeatureDetect()
{
//
获取参数
int
xOrder
=
int
.Parse((
string
)cmbSobelXOrder.SelectedItem);
int
yOrder
=
int
.Parse((
string
)cmbSobelYOrder.SelectedItem);
int
apertureSize
=
int
.Parse((
string
)cmbSobelApertureSize.SelectedItem);
if
((xOrder
==
0
&&
yOrder
==
0
)
||
(xOrder
!=
0
&&
yOrder
!=
0
))
return
"
Sobel算子,参数错误:xOrder和yOrder中必须且只能有一个非零。\r\n
"
;
//
计算
Stopwatch sw
=
new
Stopwatch();
sw.Start();
Image
<
Gray, Single
>
imageDest
=
imageSourceGrayscale.Sobel(xOrder, yOrder, apertureSize);
sw.Stop();
//
显示
pbResult.Image
=
imageDest.Bitmap;
//
释放资源
imageDest.Dispose();
//
返回
return
string
.Format(
"
·Sobel算子,用时{0:F05}毫秒,参数(x方向求导阶数:{1},y方向求导阶数:{2},方形滤波器宽度:{3})\r\n
"
, sw.Elapsed.TotalMilliseconds, xOrder, yOrder, apertureSize);
}
拉普拉斯算子
拉普拉斯算子可以用作边缘检测;可以用OpenCv中的cvLaplace函数或者EmguCv中的Image<TColor,TDepth>.Laplace方法来进行拉普拉斯变换。需要注意的是:OpenCv的文档有点小错误,apertureSize参数值不能为CV_SCHARR(-1)。
使用拉普拉斯变换的示例代码如下:
//
拉普拉斯变换
private
string
LaplaceFeatureDetect()
{
//
获取参数
int
apertureSize
=
int
.Parse((
string
)cmbLaplaceApertureSize.SelectedItem);
//
计算
Stopwatch sw
=
new
Stopwatch();
sw.Start();
Image
<
Gray, Single
>
imageDest
=
imageSourceGrayscale.Laplace(apertureSize);
sw.Stop();
//
显示
pbResult.Image
=
imageDest.Bitmap;
//
释放资源
imageDest.Dispose();
//
返回
return
string
.Format(
"
·拉普拉斯变换,用时{0:F05}毫秒,参数(方形滤波器宽度:{1})\r\n
"
, sw.Elapsed.TotalMilliseconds, apertureSize);
}
Canny算子
Canny算子也可以用作边缘检测;可以用OpenCv中的cvCanny函数或者EmguCv中的Image<TColor,TDepth>.Canny方法来进行Canny边缘检测。所不同的是,Image<TColor,TDepth>.Canny方法可以用于检测彩色图像的边缘,但是它只能使用apertureSize参数的默认值3;
而cvCanny只能处理灰度图像,不过可以自定义apertureSize。cvCanny和Canny的方法参数名有点点不同,下面是参数对照表。
Image<TColor,TDepth>.Canny CvInvoke.cvCanny
thresh lowThresh
threshLinking highThresh
3 apertureSize
值得注意的是,apertureSize只能取3,5或者7,这可以在cvcanny.cpp第87行看到:
aperture_size
&=
INT_MAX;
if
( (aperture_size
&
1
)
==
0
||
aperture_size
<
3
||
aperture_size
>
7
)
CV_ERROR( CV_StsBadFlag,
""
);
使用Canny算子的示例代码如下:
//
Canny算子
private
string
CannyFeatureDetect()
{
//
获取参数
double
lowThresh
=
double
.Parse(txtCannyLowThresh.Text);
double
highThresh
=
double
.Parse(txtCannyHighThresh.Text);
int
apertureSize
=
int
.Parse((
string
)cmbCannyApertureSize.SelectedItem);
//
计算
Stopwatch sw
=
new
Stopwatch();
sw.Start();
Image
<
Gray, Byte
>
imageDest
=
null
;
Image
<
Bgr, Byte
>
imageDest2
=
null
;
if
(rbCannyUseCvCanny.Checked)
{
imageDest
=
new
Image
<
Gray,
byte
>
(imageSourceGrayscale.Size);
CvInvoke.cvCanny(imageSourceGrayscale.Ptr, imageDest.Ptr, lowThresh, highThresh, apertureSize);
}
else
imageDest2
=
imageSource.Canny(
new
Bgr(lowThresh, lowThresh, lowThresh),
new
Bgr(highThresh, highThresh, highThresh));
sw.Stop();
//
显示
pbResult.Image
=
rbCannyUseCvCanny.Checked
?
imageDest.Bitmap : imageDest2.Bitmap;
//
释放资源
if
(imageDest
!=
null
)
imageDest.Dispose();
if
(imageDest2
!=
null
)
imageDest2.Dispose();
//
返回
return
string
.Format(
"
·Canny算子,用时{0:F05}毫秒,参数(方式:{1},阀值下限:{2},阀值上限:{3},方形滤波器宽度:{4})\r\n
"
, sw.Elapsed.TotalMilliseconds, rbCannyUseCvCanny.Checked
?
"
cvCanny
"
:
"
Image<TColor, TDepth>.Canny
"
, lowThresh, highThresh, apertureSize);
}
另外,在http://www.china-vision.net/blog/user2/15975/archives/2007/804.html有一种自动获取Canny算子高低阀值的方法,作者提供了用C语言实现的代码。我将其改写成了C#版本,代码如下:
///
<summary>
///
计算图像的自适应Canny算子阀值
///
</summary>
///
<param name="imageSrc">
源图像,只能是256级灰度图像
</param>
///
<param name="apertureSize">
方形滤波器的宽度
</param>
///
<param name="lowThresh">
阀值下限
</param>
///
<param name="highThresh">
阀值上限
</param>
unsafe
void
AdaptiveFindCannyThreshold(Image
<
Gray, Byte
>
imageSrc,
int
apertureSize,
out
double
lowThresh,
out
double
highThresh)
{
//
计算源图像x方向和y方向的1阶Sobel算子
Size size
=
imageSrc.Size;
Image
<
Gray, Int16
>
imageDx
=
new
Image
<
Gray,
short
>
(size);
Image
<
Gray, Int16
>
imageDy
=
new
Image
<
Gray,
short
>
(size);
CvInvoke.cvSobel(imageSrc.Ptr, imageDx.Ptr,
1
,
0
, apertureSize);
CvInvoke.cvSobel(imageSrc.Ptr, imageDy.Ptr,
0
,
1
, apertureSize);
Image
<
Gray, Single
>
image
=
new
Image
<
Gray,
float
>
(size);
int
i, j;
DenseHistogram hist
=
null
;
int
hist_size
=
255
;
float
[] range_0
=
new
float
[] {
0
,
256
};
double
PercentOfPixelsNotEdges
=
0.7
;
//
计算边缘的强度,并保存于图像中
float
maxv
=
0
;
float
temp;
byte
*
imageDataDx
=
(
byte
*
)imageDx.MIplImage.imageData.ToPointer();
byte
*
imageDataDy
=
(
byte
*
)imageDy.MIplImage.imageData.ToPointer();
byte
*
imageData
=
(
byte
*
)image.MIplImage.imageData.ToPointer();
int
widthStepDx
=
imageDx.MIplImage.widthStep;
int
widthStepDy
=
widthStepDx;
int
widthStep
=
image.MIplImage.widthStep;
for
(i
=
0
; i
<
size.Height; i
++
)
{
short
*
_dx
=
(
short
*
)(imageDataDx
+
widthStepDx
*
i);
short
*
_dy
=
(
short
*
)(imageDataDy
+
widthStepDy
*
i);
float
*
_image
=
(
float
*
)(imageData
+
widthStep
*
i);
for
(j
=
0
; j
<
size.Width; j
++
)
{
temp
=
(
float
)(Math.Abs(
*
(_dx
+
j))
+
Math.Abs(
*
(_dy
+
j)));
*
(_image
+
j)
=
temp;
if
(maxv
<
temp)
maxv
=
temp;
}
}
//
计算直方图
range_0[
1
]
=
maxv;
hist_size
=
hist_size
>
maxv
?
(
int
)maxv : hist_size;
hist
=
new
DenseHistogram(hist_size,
new
RangeF(range_0[
0
], range_0[
1
]));
hist.Calculate
<
Single
>
(
new
Image
<
Gray, Single
>
[] { image },
false
,
null
);
int
total
=
(
int
)(size.Height
*
size.Width
*
PercentOfPixelsNotEdges);
double
sum
=
0
;
int
icount
=
hist.BinDimension[
0
].Size;
for
(i
=
0
; i
<
icount; i
++
)
{
sum
+=
hist[i];
if
(sum
>
total)
break
;
}
//
计算阀值
highThresh
=
(i
+
1
)
*
maxv
/
hist_size;
lowThresh
=
highThresh
*
0.4
;
//
释放资源
imageDx.Dispose();
imageDy.Dispose(); image.Dispose();
hist.Dispose();
}
霍夫变换
霍夫变换是一种在图像中寻找直线、圆及其他简单形状的方法,在OpenCv中实现了霍夫线变换和霍夫圆变换。值得注意的地方有以下几点:(1)HoughLines2需要先计算Canny边缘,然后再检测直线;(2)HoughLines2计算结果的获取随获取方式的不同而不同;(3)HoughCircles检测结果似乎不正确。
使用霍夫变换的示例代码如下所示:
//
霍夫线变换
private
string
HoughLinesFeatureDetect()
{
//
获取参数
HOUGH_TYPE method
=
rbHoughLinesSHT.Checked
?
HOUGH_TYPE.CV_HOUGH_STANDARD : (rbHoughLinesPPHT.Checked
?
HOUGH_TYPE.CV_HOUGH_PROBABILISTIC : HOUGH_TYPE.CV_HOUGH_MULTI_SCALE);
double
rho
=
double
.Parse(txtHoughLinesRho.Text);
double
theta
=
double
.Parse(txtHoughLinesTheta.Text);
int
threshold
=
int
.Parse(txtHoughLinesThreshold.Text);
double
param1
=
double
.Parse(txtHoughLinesParam1.Text);
double
param2
=
double
.Parse(txtHoughLinesParam2.Text);
MemStorage storage
=
new
MemStorage();
int
linesCount
=
0
;
StringBuilder sbResult
=
new
StringBuilder();
//
计算,先运行Canny边缘检测(参数来自Canny算子属性页),然后再用计算霍夫线变换
double
lowThresh
=
double
.Parse(txtCannyLowThresh.Text);
double
highThresh
=
double
.Parse(txtCannyHighThresh.Text);
int
apertureSize
=
int
.Parse((
string
)cmbCannyApertureSize.SelectedItem);
Image
<
Gray, Byte
>
imageCanny
=
new
Image
<
Gray,
byte
>
(imageSourceGrayscale.Size);
CvInvoke.cvCanny(imageSourceGrayscale.Ptr, imageCanny.Ptr, lowThresh, highThresh, apertureSize);
Stopwatch sw
=
new
Stopwatch();
sw.Start();
IntPtr ptrLines
=
CvInvoke.cvHoughLines2(imageCanny.Ptr, storage.Ptr, method, rho, theta, threshold, param1, param2);
Seq
<
LineSegment2D
>
linesSeq
=
null
;
Seq
<
PointF
>
linesSeq2
=
null
;
if
(method
==
HOUGH_TYPE.CV_HOUGH_PROBABILISTIC)
linesSeq
=
new
Seq
<
LineSegment2D
>
(ptrLines, storage);
else
linesSeq2
=
new
Seq
<
PointF
>
(ptrLines, storage);
sw.Stop();
//
显示
Image
<
Bgr, Byte
>
imageResult
=
imageSourceGrayscale.Convert
<
Bgr, Byte
>
();
if
(linesSeq
!=
null
)
{
linesCount
=
linesSeq.Total;
foreach
(LineSegment2D line
in
linesSeq)
{
imageResult.Draw(line,
new
Bgr(255d, 0d, 0d),
4
);
sbResult.AppendFormat(
"
{0}-{1},
"
, line.P1, line.P2);
}
}
else
{
linesCount
=
linesSeq2.Total;
foreach
(PointF line
in
linesSeq2)
{
float
r
=
line.X;
float
t
=
line.Y;
double
a
=
Math.Cos(t), b
=
Math.Sin(t);
double
x0
=
a
*
r, y0
=
b
*
r;
int
x1
=
(
int
)(x0
+
1000
*
(
-
b));
int
y1
=
(
int
)(y0
+
1000
*
(a));
int
x2
=
(
int
)(x0
-
1000
*
(
-
b));
int
y2
=
(
int
)(y0
-
1000
*
(a));
Point pt1
=
new
Point(x1, y1);
Point pt2
=
new
Point(x2, y2);
imageResult.Draw(
new
LineSegment2D(pt1, pt2),
new
Bgr(255d, 0d, 0d),
4
);
sbResult.AppendFormat(
"
{0}-{1},
"
, pt1, pt2);
}
}
pbResult.Image
=
imageResult.Bitmap;
//
释放资源
imageCanny.Dispose();
imageResult.Dispose();
storage.Dispose();
//
返回
return
string
.Format(
"
·霍夫线变换,用时{0:F05}毫秒,参数(变换方式:{1},距离精度:{2},弧度精度:{3},阀值:{4},参数1:{5},参数2:{6}),找到{7}条直线\r\n{8}
"
,
sw.Elapsed.TotalMilliseconds, method.ToString(
"
G
"
), rho, theta, threshold, param1, param2, linesCount, linesCount
!=
0
?
(sbResult.ToString()
+
"
\r\n
"
) :
""
);
}
//
霍夫圆变换
private
string
HoughCirclesFeatureDetect()
{
//
获取参数
double
dp
=
double
.Parse(txtHoughCirclesDp.Text);
double
minDist
=
double
.Parse(txtHoughCirclesMinDist.Text);
double
param1
=
double
.Parse(txtHoughCirclesParam1.Text);
double
param2
=
double
.Parse(txtHoughCirclesParam2.Text);
int
minRadius
=
int
.Parse(txtHoughCirclesMinRadius.Text);
int
maxRadius
=
int
.Parse(txtHoughCirclesMaxRadius.Text);
StringBuilder sbResult
=
new
StringBuilder();
//
计算
Stopwatch sw
=
new
Stopwatch();
sw.Start();
CircleF[][] circles
=
imageSourceGrayscale.HoughCircles(
new
Gray(param1),
new
Gray(param2), dp, minDist, minRadius, maxRadius);
sw.Stop();
//
显示
Image
<
Bgr, Byte
>
imageResult
=
imageSourceGrayscale.Convert
<
Bgr, Byte
>
();
int
circlesCount
=
0
;
foreach
(CircleF[] cs
in
circles)
{
foreach
(CircleF circle
in
cs)
{
imageResult.Draw(circle,
new
Bgr(255d, 0d, 0d),
4
);
sbResult.AppendFormat(
"
圆心{0}半径{1},
"
, circle.Center, circle.Radius);
circlesCount
++
;
}
}
pbResult.Image
=
imageResult.Bitmap;
//
释放资源
imageResult.Dispose();
//
返回
return
string
.Format(
"
·霍夫圆变换,用时{0:F05}毫秒,参数(累加器图像的最小分辨率:{1},不同圆之间的最小距离:{2},边缘阀值:{3},累加器阀值:{4},最小圆半径:{5},最大圆半径:{6}),找到{7}个圆\r\n{8}
"
,
sw.Elapsed.TotalMilliseconds, dp, minDist, param1, param2, minRadius, maxRadius, circlesCount, sbResult.Length
>
0
?
(sbResult.ToString()
+
"
\r\n
"
) :
""
);
}
Harris角点
cvCornerHarris函数检测的结果实际上是一幅包含Harris角点的浮点型单通道图像,可以使用类似下面的代码来计算包含Harris角点的图像:
//
Harris角点
private
string
CornerHarrisFeatureDetect()
{
//
获取参数
int
blockSize
=
int
.Parse(txtCornerHarrisBlockSize.Text);
int
apertureSize
=
int
.Parse(txtCornerHarrisApertureSize.Text);
double
k
=
double
.Parse(txtCornerHarrisK.Text);
//
计算
Image
<
Gray, Single
>
imageDest
=
new
Image
<
Gray,
float
>
(imageSourceGrayscale.Size);
Stopwatch sw
=
new
Stopwatch();
sw.Start();
CvInvoke.cvCornerHarris(imageSourceGrayscale.Ptr, imageDest.Ptr, blockSize, apertureSize, k);
sw.Stop();
//
显示
pbResult.Image
=
imageDest.Bitmap;
//
释放资源
imageDest.Dispose();
//
返回
return
string
.Format(
"
·Harris角点,用时{0:F05}毫秒,参数(邻域大小:{1},方形滤波器宽度:{2},权重系数:{3})\r\n
"
, sw.Elapsed.TotalMilliseconds, blockSize, apertureSize, k);
}
如果要计算Harris角点列表,需要使用cvGoodFeatureToTrack函数,并传递适当的参数。
ShiTomasi角点
在默认情况下,cvGoodFeatureToTrack函数计算ShiTomasi角点;不过如果将参数use_harris设置为非0值,那么它会计算harris角点。
使用cvGoodFeatureToTrack函数的示例代码如下:
//
ShiTomasi角点
private
string
CornerShiTomasiFeatureDetect()
{
//
获取参数
int
cornerCount
=
int
.Parse(txtGoodFeaturesCornerCount.Text);
double
qualityLevel
=
double
.Parse(txtGoodFeaturesQualityLevel.Text);
double
minDistance
=
double
.Parse(txtGoodFeaturesMinDistance.Text);
int
blockSize
=
int
.Parse(txtGoodFeaturesBlockSize.Text);
bool
useHarris
=
cbGoodFeaturesUseHarris.Checked;
double
k
=
double
.Parse(txtGoodFeaturesK.Text);
//
计算
Stopwatch sw
=
new
Stopwatch();
sw.Start();
PointF[][] corners
=
imageSourceGrayscale.GoodFeaturesToTrack(cornerCount, qualityLevel, minDistance, blockSize, useHarris, k);
sw.Stop();
//
显示
Image
<
Bgr, Byte
>
imageResult
=
imageSourceGrayscale.Convert
<
Bgr, Byte
>
();
int
cornerCount2
=
0
;
StringBuilder sbResult
=
new
StringBuilder();
int
radius
=
(
int
)(minDistance
/
2
)
+
1
;
int
thickness
=
(
int
)(minDistance
/
4
)
+
1
;
foreach
(PointF[] cs
in
corners)
{
foreach
(PointF p
in
cs)
{
imageResult.Draw(
new
CircleF(p, radius),
new
Bgr(255d, 0d, 0d), thickness);
cornerCount2
++
;
sbResult.AppendFormat(
"
{0},
"
, p);
}
}
pbResult.Image
=
imageResult.Bitmap;
//
释放资源
imageResult.Dispose();
//
返回
return
string
.Format(
"
·ShiTomasi角点,用时{0:F05}毫秒,参数(最大角点数目:{1},最小特征值:{2},角点间的最小距离:{3},邻域大小:{4},角点类型:{5},权重系数:{6}),检测到{7}个角点\r\n{8}
"
,
sw.Elapsed.TotalMilliseconds, cornerCount, qualityLevel, minDistance, blockSize, useHarris
?
"
Harris
"
:
"
ShiTomasi
"
, k, cornerCount2, cornerCount2
>
0
?
(sbResult.ToString()
+
"
\r\n
"
) :
""
);
}
亚像素级角点
在检测亚像素级角点前,需要提供角点的初始为止,这些初始位置可以用本文给出的其他的角点检测方式来获取,不过使用GoodFeaturesToTrack得到的结果最方便直接使用。
亚像素级角点检测的示例代码如下:
亚像素级角点
SURF角点
OpenCv中的cvExtractSURF函数和EmguCv中的Image<TColor,TDepth>.ExtractSURF方法用于检测SURF角点。
SURF角点检测的示例代码如下:
//
SURF角点
private
string
SurfFeatureDetect()
{
//
获取参数
bool
getDescriptors
=
cbSurfGetDescriptors.Checked;
MCvSURFParams surfParam
=
new
MCvSURFParams();
surfParam.extended
=
rbSurfBasicDescriptor.Checked
?
0
:
1
;
surfParam.hessianThreshold
=
double
.Parse(txtSurfHessianThreshold.Text);
surfParam.nOctaves
=
int
.Parse(txtSurfNumberOfOctaves.Text);
surfParam.nOctaveLayers
=
int
.Parse(txtSurfNumberOfOctaveLayers.Text);
//
计算
SURFFeature[] features
=
null
;
MKeyPoint[] keyPoints
=
null
;
Stopwatch sw
=
new
Stopwatch();
sw.Start();
if
(getDescriptors)
features
=
imageSourceGrayscale.ExtractSURF(
ref
surfParam);
else
keyPoints
=
surfParam.DetectKeyPoints(imageSourceGrayscale,
null
);
sw.Stop();
//
显示
bool
showDetail
=
cbSurfShowDetail.Checked;
Image
<
Bgr, Byte
>
imageResult
=
imageSourceGrayscale.Convert
<
Bgr, Byte
>
();
StringBuilder sbResult
=
new
StringBuilder();
int
idx
=
0
;
if
(getDescriptors)
{
foreach
(SURFFeature feature
in
features)
{
imageResult.Draw(
new
CircleF(feature.Point.pt,
5
),
new
Bgr(255d, 0d, 0d),
2
);
if
(showDetail)
{
sbResult.AppendFormat(
"
第{0}点(坐标:{1},尺寸:{2},方向:{3}°,hessian值:{4},拉普拉斯标志:{5},描述:[
"
,
idx, feature.Point.pt, feature.Point.size, feature.Point.dir, feature.Point.hessian, feature.Point.laplacian);
foreach
(
float
d
in
feature.Descriptor)
sbResult.AppendFormat(
"
{0},
"
, d);
sbResult.Append(
"
]),
"
);
}
idx
++
;
}
}
else
{
foreach
(MKeyPoint keypoint
in
keyPoints)
{
imageResult.Draw(
new
CircleF(keypoint.Point,
5
),
new
Bgr(255d, 0d, 0d),
2
);
if
(showDetail)
sbResult.AppendFormat(
"
第{0}点(坐标:{1},尺寸:{2},方向:{3}°,响应:{4},octave:{5}),
"
,
idx, keypoint.Point, keypoint.Size, keypoint.Angle, keypoint.Response, keypoint.Octave);
idx
++
;
}
}
pbResult.Image
=
imageResult.Bitmap;
//
释放资源
imageResult.Dispose();
//
返回
return
string
.Format(
"
·SURF角点,用时{0:F05}毫秒,参数(描述:{1},hessian阀值:{2},octave数目:{3},每个octave的层数:{4},检测到{5}个角点\r\n{6}
"
,
sw.Elapsed.TotalMilliseconds, getDescriptors
?
(surfParam.extended
==
0
?
"
获取基本描述
"
:
"
获取扩展描述
"
) :
"
不获取描述
"
, surfParam.hessianThreshold,
surfParam.nOctaves, surfParam.nOctaveLayers, getDescriptors
?
features.Length : keyPoints.Length, showDetail
?
sbResult.ToString()
+
"
\r\n
"
:
""
);
}
Star关键点
OpenCv中的cvGetStarKeypoints函数和EmguCv中的Image<TColor,TDepth>.GetStarKeypoints方法用于检测“星型”附近的点。
Star关键点检测的示例代码如下:
//
Star关键点
private
string
StarKeyPointFeatureDetect()
{
//
获取参数
StarDetector starParam
=
new
StarDetector();
starParam.MaxSize
=
int
.Parse((
string
)cmbStarMaxSize.SelectedItem);
starParam.ResponseThreshold
=
int
.Parse(txtStarResponseThreshold.Text);
starParam.LineThresholdProjected
=
int
.Parse(txtStarLineThresholdProjected.Text);
starParam.LineThresholdBinarized
=
int
.Parse(txtStarLineThresholdBinarized.Text);
starParam.SuppressNonmaxSize
=
int
.Parse(txtStarSuppressNonmaxSize.Text);
//
计算
Stopwatch sw
=
new
Stopwatch();
sw.Start();
MCvStarKeypoint[] keyPoints
=
imageSourceGrayscale.GetStarKeypoints(
ref
starParam);
sw.Stop();
//
显示
Image
<
Bgr, Byte
>
imageResult
=
imageSourceGrayscale.Convert
<
Bgr, Byte
>
();
StringBuilder sbResult
=
new
StringBuilder();
int
idx
=
0
;
foreach
(MCvStarKeypoint keypoint
in
keyPoints)
{
imageResult.Draw(
new
CircleF(
new
PointF(keypoint.pt.X, keypoint.pt.Y), keypoint.size
/
2
),
new
Bgr(255d, 0d, 0d), keypoint.size
/
4
);
sbResult.AppendFormat(
"
第{0}点(坐标:{1},尺寸:{2},强度:{3}),
"
, idx, keypoint.pt, keypoint.size, keypoint.response);
idx
++
;
}
pbResult.Image
=
imageResult.Bitmap;
//
释放资源
imageResult.Dispose();
//
返回
return
string
.Format(
"
·Star关键点,用时{0:F05}毫秒,参数(MaxSize:{1},ResponseThreshold:{2},LineThresholdProjected:{3},LineThresholdBinarized:{4},SuppressNonmaxSize:{5}),检测到{6}个关键点\r\n{7}
"
,
sw.Elapsed.TotalMilliseconds, starParam.MaxSize, starParam.ResponseThreshold, starParam.LineThresholdProjected, starParam.LineThresholdBinarized, starParam.SuppressNonmaxSize, keyPoints.Length, keyPoints.Length
>
0
?
(sbResult.ToString()
+
"
\r\n
"
) :
""
);
}
FAST角点检测
FAST角点由E. Rosten教授提出,相比其他检测手段,这种方法的速度正如其名,相当的快。值得关注的是他所研究的理论都是属于实用类的,都很快。Rosten教授实现了FAST角点检测,并将其提供给了OpenCv,相当的有爱呀;不过OpenCv中的函数和Rosten教授的实现似乎有点点不太一样。遗憾的是,OpenCv中目前还没有FAST角点检测的文档。下面是我从Rosten的代码中找到的函数声明,可以看到粗略的参数说明。
/*
The references are:
* Machine learning for high-speed corner detection,
E. Rosten and T. Drummond, ECCV 2006
* Faster and better: A machine learning approach to corner detection
E. Rosten, R. Porter and T. Drummond, PAMI, 2009
*/
void cvCornerFast( const CvArr* image, int threshold, int N,
int nonmax_suppression, int* ret_number_of_corners,
CvPoint** ret_corners);
image: OpenCV image in which to detect corners. Must be 8 bit unsigned.
threshold: Threshold for detection (higher is fewer corners). 0--255
N: Arc length of detector, 9, 10, 11 or 12. 9 is usually best.
nonmax_suppression: Whether to perform nonmaximal suppression.
ret_number_of_corners: The number of detected corners is returned here.
ret_corners: The corners are returned here.
EmguCv中的Image<TColor,TDepth>.GetFASTKeypoints方法也实现了FAST角点检测,不过参数少了一些,只有threshold和nonmaxSupression,其中N我估计取的默认值9,但是返回的角点数目我不知道是怎么设置的。
使用FAST角点检测的示例代码如下:
FAST关键点
Lepetit关键点
Lepetit关键点由Vincent Lepetit提出,可以在他的网站(http://cvlab.epfl.ch/~vlepetit/)上看到相关的论文等资料。EmguCv中的类LDetector实现了Lepetit关键点的检测。
使用Lepetit关键点检测的示例代码如下:
//
Lepetit关键点
private
string
LepetitKeyPointFeatureDetect()
{
//
获取参数
LDetector lepetitDetector
=
new
LDetector();
lepetitDetector.BaseFeatureSize
=
double
.Parse(txtLepetitBaseFeatureSize.Text);
lepetitDetector.ClusteringDistance
=
double
.Parse(txtLepetitClasteringDistance.Text);
lepetitDetector.NOctaves
=
int
.Parse(txtLepetitNumberOfOctaves.Text);
lepetitDetector.NViews
=
int
.Parse(txtLepetitNumberOfViews.Text);
lepetitDetector.Radius
=
int
.Parse(txtLepetitRadius.Text);
lepetitDetector.Threshold
=
int
.Parse(txtLepetitThreshold.Text);
lepetitDetector.Verbose
=
cbLepetitVerbose.Checked;
int
maxCount
=
int
.Parse(txtLepetitMaxCount.Text);
bool
scaleCoords
=
cbLepetitScaleCoords.Checked;
bool
showDetail
=
cbLepetitShowDetail.Checked;
//
计算
Stopwatch sw
=
new
Stopwatch();
sw.Start();
MKeyPoint[] keyPoints
=
lepetitDetector.DetectKeyPoints(imageSourceGrayscale, maxCount, scaleCoords);
sw.Stop();
//
显示
Image
<
Bgr, Byte
>
imageResult
=
imageSourceGrayscale.Convert
<
Bgr, Byte
>
();
StringBuilder sbResult
=
new
StringBuilder();
int
idx
=
0
;
foreach
(MKeyPoint keypoint
in
keyPoints)
{
//
imageResult.Draw(new CircleF(keypoint.Point, (int)(keypoint.Size / 2)), new Bgr(255d, 0d, 0d), (int)(keypoint.Size / 4));
imageResult.Draw(
new
CircleF(keypoint.Point,
4
),
new
Bgr(255d, 0d, 0d),
2
);
if
(showDetail)
sbResult.AppendFormat(
"
第{0}点(坐标:{1},尺寸:{2},方向:{3}°,响应:{4},octave:{5}),
"
,
idx, keypoint.Point, keypoint.Size, keypoint.Angle, keypoint.Response, keypoint.Octave);
idx
++
;
}
pbResult.Image
=
imageResult.Bitmap;
//
释放资源
imageResult.Dispose();
//
返回
return
string
.Format(
"
·Lepetit关键点,用时{0:F05}毫秒,参数(基础特征尺寸:{1},集群距离:{2},阶数:{3},视图数:{4},半径:{5},阀值:{6},计算详细结果:{7},最大关键点数目:{8},缩放坐标:{9}),检测到{10}个关键点\r\n{11}
"
,
sw.Elapsed.TotalMilliseconds, lepetitDetector.BaseFeatureSize, lepetitDetector.ClusteringDistance, lepetitDetector.NOctaves, lepetitDetector.NViews,
lepetitDetector.Radius, lepetitDetector.Threshold, lepetitDetector.Verbose, maxCount, scaleCoords, keyPoints.Length, showDetail
?
(sbResult.ToString()
+
"
\r\n
"
) :
""
);
}
SIFT角点
SIFT角点是一种广泛使用的图像特征,可用于物体跟踪、图像匹配、图像拼接等领域,然而奇怪的是它并未被OpenCv实现。提出SIFT角点的David Lowe教授已经用C和matlab实现了SIFT角点的检测,并开放了源代码,不过他的实现不方便直接使用。您可以在http://www.cs.ubc.ca/~lowe/keypoints/看到SIFT的介绍、相关论文及David Lowe教授的实现代码。下面我要介绍由Andrea Vedaldi和Brian Fulkerson先生创建的vlfeat开源图像处理库,vlfeat库有C和matlab两种实现,其中包含了SIFT检测。您可以在http://www.vlfeat.org/下载到vlfeat库的代码、文档及可执行文件。
使用vlfeat检测SIFT角点需要以下步骤:
(1)用函数vl_sift_new()初始化SIFT过滤器对象,该过滤器对象可以反复用于多幅尺寸相同的图像;
(2)用函数vl_sift_first_octave()及vl_sift_process_next()遍历缩放空间的每一阶,直到返回VL_ERR_EOF为止;
(3)对于缩放空间的每一阶,用函数vl_sift_detect()来获取关键点;
(4)对每个关键点,用函数vl_sift_calc_keypoint_orientations()来获取该点的方向;
(5)对关键点的每个方向,用函数vl_sift_calc_keypoint_descriptor()来获取该方向的描述;
(6)使用完之后,用函数vl_sift_delete()来释放资源;
(7)如果要计算某个自定义关键点的描述,可以使用函数vl_sift_calc_raw_descriptor()。
直接使用vlfeat中的SIFT角点检测示例代码如下:
通过P/Invoke调用vlfeat函数来进行SIFT检测
要在.net中使用vlfeat还是不够方便,为此我对vlfeat中的SIFT角点检测部分进行了封装,将相关操作放到了类SiftDetector中。
使用SiftDetector需要两至三步:
(1)用构造函数初始化SiftDetector对象;
(2)用Process方法计算特征;
(3)视需要调用Dispose方法释放资源,或者等待垃圾回收器来自动释放资源。
使用SiftDetector的示例代码如下:
通过dotnet封装的SiftDetector类来进行SIFT检测
对vlfeat库中的SIFT部分封装代码如下所示:
定义SiftDetector类
MSER区域
OpenCv中的函数cvExtractMSER以及EmguCv中的Image<TColor,TDepth>.ExtractMSER方法实现了MSER区域的检测。由于OpenCv的文档中目前还没有cvExtractMSER这一部分,大家如果要看文档的话,可以先去看EmguCv的文档。
需要注意的是MSER区域的检测结果是区域中所有的点序列。例如检测到3个区域,其中一个区域是从(0,0)到(2,1)的矩形,那么结果点序列为:(0,0),(1,0),(2,0),(2,1),(1,1),(0,1)。
MSER区域检测的示例代码如下:
MSER(区域)特征检测
各种特征检测方法性能对比
上面介绍了这么多的特征检测方法,那么它们的性能到底如何呢?因为它们的参数设置对处理时间及结果的影响很大,我们在这里基本都使用默认参数处理同一幅图像。在我机器上的处理结果见下表:
| 特征 | 用时(毫秒) | 特征数目 |
| Sobel算子 | 5.99420 | n/a |
| 拉普拉斯算子 | 3.13440 | n/a |
| Canny算子 | 3.41160 | n/a |
| 霍夫线变换 | 13.70790 | 10 |
| 霍夫圆变换 | 78.07720 | 0 |
| Harris角点 | 9.41750 | n/a |
| ShiTomasi角点 | 16.98390 | 18 |
| 亚像素级角点 | 3.63360 | 18 |
| SURF角点 | 266.27000 | 151 |
| Star关键点 | 14.82800 | 56 |
| FAST角点 | 31.29670 | 159 |
| SIFT角点 | 287.52310 | 54 |
| MSER区域 | 40.62970 | 2 |
(图片尺寸:583x301,处理器:AMD ATHLON IIx2 240,内存:DDR3 4G,显卡:GeForce 9500GT,操作系统:Windows 7)

感谢您耐心看完本文,希望对您有所帮助。
下一篇文章我们将一起看看如何来跟踪本文讲到的特征点(角点)。
另外,如果需要本文的源代码,请点击这里下载。
本文详细介绍并对比了多种图像特征检测方法,包括Sobel算子、拉普拉斯算子、Canny算子等边缘检测方法,以及Harris角点、ShiTomasi角点等角点检测方法,并给出了每种方法的具体实现代码。

1627

被折叠的 条评论
为什么被折叠?



