京东数据驱动下的个性化推荐

本文介绍了京东技术总监刘尚堃关于个性化推荐系统的分享,详细解释了召回和排序模型的工作原理,探讨了如何利用用户行为、偏好和地区信息进行有效推荐,并展望了未来的发展方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

刘尚堃 京东数据驱动下的个性化推荐系统(PPT附下载)

大数据

刘尚堃·京东推荐搜索部技术总监

刘尚堃,京东推荐搜索部技术总监,有七年B2C行业搜索经验。目前负责搜索引擎、推荐方面的产品研发和团队管理工作。他领导团队将推荐搜索技术应用于京东各个品牌的支持当中,包括移动端的平台、以及PC端平台、以及微信平台全部的推荐业务和场景。

个性化推荐简述

个性化推荐就是通过全方位的数据精准刻画用户的购买意图,然后有针对性给用户推荐用户购买意愿高的商品,为用户提供极致的产品体验,提升下单转化率,增强用户粘性。个性化推荐模型分为召回和排序两大类,刘尚堃在采访中,通过举例详细的讲解了这两大类模型。

召回模型

召回模型就是选举推荐的侯选,京东主要用到基于行为的召回模型,其分为近期和长期两种,其他还有基于偏好、基于地域等。

大数据

基于行为

基于近期行为的召回模型:例如一个用户喜欢最近浏览一些炒股类的书籍,那么就会给这个用户推荐一些他可能感兴趣的其他炒股书籍。像这样就尤其是最近发生的行为,这样的情况就叫做近期行为的相似商品推荐。例如一个用户买了一本《秘密花园》,这时候就会马上给用户推荐彩色笔。像这样的情况就叫做近期行为的商品购买搭配推荐。刘尚堃表示:“基于近期行为的在线算法是最基础最好用同时也是转化率最高的”。

大数据

长尾商品的搭配

基于中长期行为的召回模型:中长期的行为通常在半年左右,可以用浏览相似、离线购买搭配和离线的SVD。当在做搭配的时会有一些小Trick。因为京东的商品比较丰富,其中有些新商品没有用户行为。针对这样的情况,利用购物篮分析,建立产品和产品之间的关系。把这些关系应用到个性化推荐中去,提升长尾商品的搭配覆盖率。

大数据

基于偏好

基于偏好

基于偏好也就是用户画像:比如女孩又比较喜欢化妆品买衣服,那么就会根据她在京东过去的一些行为,针对兴趣爱好进行推荐。当然在推荐的时候,还要考虑到用户的购买力,敏感度等问题。如果用户特别钟爱户外用品,这就是用户的偏好。喜欢韩版衣服,这是用户的修饰的偏好。当不知道用户喜欢什么产品,也不知道什么兴趣爱好甚至偏好时,就会通过一些算法来预测你感兴趣的产品。基于大数据从海量的其他用户中挖掘最接近的一个用户,看看他喜欢什么样的东西,他的兴趣是什么,他的品牌是什么,然后再传递给用户。

基于地域:京东有很多配送地,可以把一些区域做一些建模,比如说三里屯地区扑克牌、色子买的人比较多,因为有人需要它们给女孩变魔术。还有一些别的地区,也可能有类似这样的偏向于某一种消费品。通过区域划分可以获得很多的信息,比如购买力,就拿万国城和史个庄相比,万国城的消费程度比较高,就推荐一些高价位的商品。地域模型主要还可以用在没有任何消费行为的新用户上,就拿一名从来没有在京东上购买过商品的学来说,如果他是清华大学这个区域,就推荐一些比较有难度的考研题目,或四六级书籍。如果是北京联合大学的学生,就相对应简单一些。

排序模型

当积累一定的用户和流量,有一定点击和购买之后,就需用到排序算法。

大数据

排序学习

标记:Point、pair、wise。第一步是做模型选取,因为模型有不同的特征和特性需要选取模型。第二是根据选取的模型进行标注,如果是Point标注,是选取正例和负例,如果是pair wise标注方法是,比如用ABCD四个商品,A没有任何操作,B点击了,C购买了,D没有任何操作,那么就是点击了BA,那么BA就是一个正例。CA因为是实际购买的,是正例,还有CB由于C是购买,B是点击,购买比点击更重要一些,CB也是正例,CD也是一个正例。后面的Tao是比较重要的程度。

大数据

特征计算:召回模型标记特征,在线相似、在线相关、离线相似、离线相关,基于用户画像的召回和基于地域的召回,从哪个模型召回,这是我们重要的内容。商业模型,比如某一个商品是大品牌还是小品牌等。用户特征,实际上是对用户画像的维度,用户的性别和购买力,还有用户之前点击的商品以及之前购买的商品是什么等。商品特征,,商品的销量数,价格区间等。、上下文特征,指的是用户之前和之后一系列的操作等。时间特征,什么时间点对这个商品进行了点击和购买等。地域特征、季节特征等。

离线计算和在线计算

大数据

离线计算,数据存在Data Mart,通过Hadoop上面运行Map Reduce,另外大量通过Mahout和Spark,通过分布式任务调度系统将输送的结果存入HBase当中。

大数据

在线计算计算流程,通过Kafka接收消息存入HBase当中,在线计算主要基于Storm,实时消息基于Kafka是150亿+消息的处理。

未来突破点

当问及未来针对个性化推荐系统从哪个角度去突破时候,刘尚堃这样说:“个性化推荐会达到一定瓶颈是肯定的,不敢说在机器学习、推荐搜索算法上,已经达到了一个什么样的高度。因为在前面有很多巨头,包括国外也有不断地出现一些新的技术。京东推荐部门经过了几年的发展不断的趋向完美,在资深团队成长的同时还有来自新浪谷歌的科学家加入。在过去,京东关更多关注的是推荐系统怎么去带动京东的销售,怎么帮助网站提高转化率。在未来,需要更多考虑的是体验类的指标,就是怎么去提升用户体验度。”

PPT预览:

36大数据36大数据36大数据36大数据36大数据36大数据36大数据36大数据36大数据36大数据36大数据36大数据36大数据36大数据36大数据36大数据36大数据36大数据36大数据

PPT下载:电商和零售业的转型_刘尚堃_京东数据驱动下的个性化推荐系统.pdf

End

来自36大数据(36dsj.com): 36大数据  »  刘尚堃 京东数据驱动下的个性化推荐系统(PPT附下载)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值