Bag-of-words model in computer vision

本文介绍计算机视觉中的词袋模型(BoW),该模型通过将图像特征视为“词汇”来实现图像分类。文中详细阐述了基于BoW模型的图像表示方法,包括特征检测、描述及代码本生成,并探讨了如何利用生成式和判别式模型进行学习和识别。

FROM:http://en.wikipedia.org/wiki/Bag-of-words_model_in_computer_vision

Bag-of-words model in computer vision

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In computer vision, the bag-of-words model (BoW model) can be applied to image classification, by treating image features as words. In document classification, a bag of words is a sparse vector of occurrence counts of words; that is, a sparse histogram over the vocabulary. In computer vision, a bag of visual words is a vector of occurrence counts of a vocabulary of local image features.

Representation based on the BoW model[edit]

Image representation based on the BoW model[edit]

To represent an image using BoW model, an image can be treated as a document. Similarly, "words" in images need to be defined too. To achieve this, it usually includes following three steps: feature detection, feature description, and codebook generation.[1] A definition of the BoW model can be the "histogram representation based on independent features".[2] Content based image indexing and retrieval (CBIR) appears to be the early adopter of this image representation technique.[3]

Feature representation[edit]

After feature detection, each image is abstracted by several local patches. Feature representation methods deal with how to represent the patches as numerical vectors. These vectors are called feature descriptors. A good descriptor should have the ability to handle intensity, rotation, scale and affine variations to some extent. One of the most famous descriptors is Scale-invariant feature transform (SIFT).[4] SIFT converts each patch to 128-dimensional vector. After this step, each image is a collection of vectors of the same dimension (128 for SIFT), where the order of different vectors is of no importance.

Codebook generation[edit]

The final step for the BoW model is to convert vector represented patches to "codewords" (analogy to words in text documents), which also produces a "codebook" (analogy to a word dictionary). A codeword can be considered as a representative of several similar patches. One simple method is performing k-means clustering over all the vectors.[5] Codewords are then defined as the centers of the learned clusters. The number of the clusters is the codebook size (analogy to the size of the word dictionary).

Thus, each patch in an image is mapped to a certain codeword through the clustering process and the image can be represented by the histogram of the codewords.

Learning and recognition based on the BoW model[edit]

Computer vision researchers have developed several learning methods to leverage the BoW model for image related task, such as object categorization. These methods can roughly be divided into two categories, generative and discriminative models. For multiple label categorization problem, the confusion matrix can be used as an evaluation metric.

Generative models[edit]

Here are some notations for this section. Suppose the size of codebook is V.

  • w: each patch w is a V-dimensional vector that has a single component that equals to one and all other components equal to zero (For k-means clustering setting, the single component equal one indicates the cluster that w belongs to). The vth codeword in the codebook can be represented as w^v=1 and w^u = 0 for u\neq v.
  • \mathbf{w}: each image is represented by \mathbf{w}=[w_1, w_2, \cdots, w_N], all the patches in an image
  • d_j: the jth image in an image collection
  • c: category of the image
  • z: theme or topic of the patch
  • \pi: mixture proportion

Since the BoW model is an analogy to the BoW model in NLP, generative models developed in text domains can also be adapted in computer vision. Simple Naïve Bayes model and hierarchical Bayesian models are discussed.

Naïve Bayes[edit]

The simplest one is Naïve Bayes classifier.[6] Using the language of graphical models, the Naïve Bayes classifier is described by the equation below. The basic idea (or assumption) of this model is that each category has its own distribution over the codebooks, and that the distributions of each category are observably different. Take a face category and a car category for an example. The face category may emphasize the codewords which represent "nose", "eye" and "mouth", while the car category may emphasize the codewords which represent "wheel" and "window". Given a collection of training examples, the classifier learns different distributions for different categories. The categorization decision is made by

  • c^*=\arg \max_c p(c|\mathbf{w}) = \arg \max_c p(c)p(\mathbf{w}|c)=\arg \max_c p(c)\prod_{n=1}^Np(w_n|c)

Since the Naïve Bayes classifier is simple yet effective, it is usually used as a baseline method for comparison.

Hierarchical Bayesian models[edit]

The basic assumption of Naïve Bayes model does not hold sometimes. For example, a natural scene image may contain several different themes. Probabilistic latent semantic analysis (pLSA)[7][8] and latent Dirichlet allocation (LDA)[9] are two popular topic models from text domains to tackle the similar multiple "theme" problem. Take LDA for an example. To model natural scene images using LDA, an analogy is made like this (Figure 9):

  • the image category is mapped to the document category;
  • the mixture proportion of themes maps the mixture proportion of topics;
  • the theme index is mapped to topic index;
  • the codeword is mapped to the word.

This method shows very promising results in natural scene categorization on 13 Natural Scene Categories.[1]

Discriminative models[edit]

Since images are represented based on the BoW model, any discriminative model suitable for text document categorization can be tried, such as support vector machine (SVM)[6] and AdaBoost.[10] Kernel trick is also applicable when kernel based classifier is used, such as SVM. Pyramid match kernel is newly developed one based on the BoW model. The local feature approach of using BoW model representation learnt by machine learning classifiers with different kernels (e.g., EMD-kernel and X^2 kernel) has been vastly tested in the area of texture and object recognition.[11] Very promising results on a number of datasets have been reported. This approach[11] has achieved very impressive result in the the PASCAL Visual Object Classes Challenge.

Pyramid match kernel[edit]

Pyramid match kernel[12] is a fast algorithm (linear complexity instead of classic one in quadratic complexity) kernel function (satisfying Mercer's condition) which maps the BoW features, or set of features in high dimension, to multi-dimensional multi-resolution histograms. An advantage of these multi-resolution histograms is their ability to capture co-occurring features. The pyramid match kernel builds multi-resolution histograms by binning data points into discrete regions of increasing size. Thus, points that do not match at high resolutions have the chance to match at low resolutions. The pyramid match kernel performs an approximate similarity match, without explicit search or computation of distance. Instead, it intersects the histograms to approximate the optimal match. Accordingly, the computation time is only linear in the number of features. Compared with other kernel approaches, the pyramid match kernel is much faster, yet provides equivalent accuracy. The pyramid match kernel was applied to ETH-80 database and Caltech 101 database with promising results.[12][13]

Limitations and recent developments[edit]

One of the notorious disadvantages of BoW is that it ignores the spatial relationships among the patches, which are very important in image representation. Researchers have proposed several methods to incorporate the spatial information. For feature level improvements, correlogram features can capture spatial co-occurrences of features.[14] For generative models, relative positions[15][16] of codewords are also taken into account. The hierarchical shape and appearance model for human action[17] introduces a new part layer (Constellation model) between the mixture proportion and the BoW features, which captures the spatial relationships among parts in the layer. For discriminative models, spatial pyramid match[18] performs pyramid matching by partitioning the image into increasingly fine sub-regions and compute histograms of local features inside each sub-region.

Furthermore, the BoW model has not been extensively tested yet for view point invariance and scale invariance, and the performance is unclear. Also the BoW model for object segmentation and localization is not well understood.[2]

See also[edit]

References[edit]

  1. ^ a b Fei-Fei Li; Perona, P. (2005). "2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)" 2. p. 524. doi:10.1109/CVPR.2005.16. ISBN 0-7695-2372-2.  |chapter= ignored (help)
  2. ^ a b L. Fei-Fei, R. Fergus, and A. Torralba. "Recognizing and Learning Object Categories, CVPR 2007 short course". 
  3. ^ Qiu, G. (2002). "Indexing chromatic and achromatic patterns for content-based colour image retrieval". Pattern Recognition 35 (8): 1675–1686. doi:10.1016/S0031-3203(01)00162-5. 
  4. ^ Vidal-Naquet; Ullman (1999). "Object recognition with informative features and linear classification". Proceedings Ninth IEEE International Conference on Computer Vision. pp. 1150–1157. doi:10.1109/ICCV.2003.1238356. ISBN 0-7695-1950-4. 
  5. ^ T. Leung and J. Malik (2001). "Representing and recognizing the visual appearance of materials using three-dimensional textons". International Journal of Computer Vision 43 (1): 29–44. doi:10.1023/A:1011126920638. 
  6. ^ a b G. Csurka, C. Dance, L.X. Fan, J. Willamowski, and C. Bray (2004). "Visual categorization with bags of keypoints". Proc. of ECCV International Workshop on Statistical Learning in Computer Vision. 
  7. ^ T. Hoffman (1999). "Probabilistic Latent Semantic Analysis". Proc. of the Fifteenth Conference on Uncertainty in Artificial Intelligence. 
  8. ^ Sivic, J.; Russell, B.C.; Efros, A.A.; Zisserman, A.; Freeman, W.T. (2005). "Discovering objects and their location in images". Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1. p. 370. doi:10.1109/ICCV.2005.77. ISBN 0-7695-2334-X. 
  9. ^ D. Blei, A. Ng, and M. Jordan (2003). Lafferty, John, ed. "Latent Dirichlet allocation". Journal of Machine Learning Research 3 (4–5): 993–1022. doi:10.1162/jmlr.2003.3.4-5.993. 
  10. ^ Serre, T.; Wolf, L.; Poggio, T. (2005). "Object Recognition with Features Inspired by Visual Cortex". 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) 2. p. 994. doi:10.1109/CVPR.2005.254. ISBN 0-7695-2372-2. 
  11. ^ a b Jianguo Zhang, Marcin Marszałek, Svetlana Lazebnik, Cordelia Schmid (2007). "Local Features and Kernels for Classification of Texture and Object Categories: a Comprehensive Study". International Journal of Computer Vision 73 (2): 213–238. doi:10.1007/s11263-006-9794-4. 
  12. ^ a b Grauman, K.; Darrell, T. (2005). "The pyramid match kernel: discriminative classification with sets of image features". Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1. p. 1458. doi:10.1109/ICCV.2005.239. ISBN 0-7695-2334-X. 
  13. ^ Jianchao Yang; Kai Yu; Yihong Gong; Huang, T. (2009). "Linear spatial pyramid matching using sparse coding for image classification". 2009 IEEE Conference on Computer Vision and Pattern Recognition. p. 1794. doi:10.1109/CVPR.2009.5206757. ISBN 978-1-4244-3992-8. 
  14. ^ Savarese, S.; Winn, J.; Criminisi, A. (2006). "Discriminative Object Class Models of Appearance and Shape by Correlatons". 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 2 (CVPR'06) 2. p. 2033. doi:10.1109/CVPR.2006.102. ISBN 0-7695-2597-0. 
  15. ^ Sudderth, E.B.; Torralba, A.; Freeman, W.T.; Willsky, A.S. (2005). "Learning hierarchical models of scenes, objects, and parts". Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1. p. 1331. doi:10.1109/ICCV.2005.137. ISBN 0-7695-2334-X. 
  16. ^ E. Sudderth, A. Torralba, W. Freeman, and A. Willsky (2005). "Describing Visual Scenes using Transformed Dirichlet Processes". Proc. of Neural Information Processing Systems. 
  17. ^ Niebles, Juan Carlos; Li Fei-Fei (2007). "A Hierarchical Model of Shape and Appearance for Human Action Classification". 2007 IEEE Conference on Computer Vision and Pattern Recognition. p. 1. doi:10.1109/CVPR.2007.383132. ISBN 1-4244-1179-3. 
  18. ^ Lazebnik, S.; Schmid, C.; Ponce, J. (2006). "Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories". 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 2 (CVPR'06) 2. p. 2169. doi:10.1109/CVPR.2006.68. ISBN 0-7695-2597-0. 

External links[edit]

<img src="//en.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" _xhe_src="//en.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;"/>
基于实时迭代的数值鲁棒NMPC双模稳定预测模型(Matlab代码实现)内容概要:本文介绍了基于实时迭代的数值鲁棒非线性模型预测控制(NMPC)双模稳定预测模型的研究与Matlab代码实现,重点在于通过数值方法提升NMPC在动态系统中的鲁棒性与稳定性。文中结合实时迭代机制,构建了能够应对系统不确定性与外部扰动的双模预测控制框架,并利用Matlab进行仿真验证,展示了该模型在复杂非线性系统控制中的有效性与实用性。同时,文档列举了大量相关的科研方向与技术应用案例,涵盖优化调度、路径规划、电力系统管理、信号处理等多个领域,体现了该方法的广泛适用性。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事自动化、电气工程、智能制造等领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于解决非线性动态系统的实时控制问题,如机器人控制、无人机路径跟踪、微电网能量管理等;②帮助科研人员复现论文算法,开展NMPC相关创新研究;③为复杂系统提供高精度、强鲁棒性的预测控制解决方案。; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,重点关注NMPC的实时迭代机制与双模稳定设计原理,并参考文档中列出的相关案例拓展应用场景,同时可借助网盘资源获取完整代码与数据支持。
UWB-IMU、UWB定位对比研究(Matlab代码实现)内容概要:本文介绍了名为《UWB-IMU、UWB定位对比研究(Matlab代码实现)》的技术文档,重点围绕超宽带(UWB)与惯性测量单元(IMU)融合定位技术展开,通过Matlab代码实现对两种定位方式的性能进行对比分析。文中详细阐述了UWB单独定位与UWB-IMU融合定位的原理、算法设计及仿真实现过程,利用多传感器数据融合策略提升定位精度与稳定性,尤其在复杂环境中减少信号遮挡和漂移误差的影响。研究内容包括系统建模、数据预处理、滤波算法(如扩展卡尔曼滤波EKF)的应用以及定位结果的可视化与误差分析。; 适合人群:具备一定信号处理、导航定位或传感器融合基础知识的研究生、科研人员及从事物联网、无人驾驶、机器人等领域的工程技术人员。; 使用场景及目标:①用于高精度室内定位系统的设计与优化,如智能仓储、无人机导航、工业巡检等;②帮助理解多源传感器融合的基本原理与实现方法,掌握UWB与IMU互补优势的技术路径;③为相关科研项目或毕业设计提供可复现的Matlab代码参考与实验验证平台。; 阅读建议:建议读者结合Matlab代码逐段理解算法实现细节,重点关注数据融合策略与滤波算法部分,同时可通过修改参数或引入实际采集数据进行扩展实验,以加深对定位系统性能影响因素的理解。
本系统基于MATLAB平台开发,适用于2014a、2019b及2024b等多个软件版本,并提供了可直接执行的示例数据集。代码采用模块化设计,关键参数均可灵活调整,程序结构逻辑分明且附有详细说明注释。主要面向计算机科学、电子信息工程、数学等相关专业的高校学生,适用于课程实验、综合作业及学位论文等教学与科研场景。 水声通信是一种借助水下声波实现信息传输的技术。近年来,多输入多输出(MIMO)结构与正交频分复用(OFDM)机制被逐步整合到水声通信体系中,显著增强了水下信息传输的容量与稳健性。MIMO配置通过多天线收发实现空间维度上的信号复用,从而提升频谱使用效率;OFDM方案则能够有效克服水下信道中的频率选择性衰减问题,保障信号在复杂传播环境中的可靠送达。 本系统以MATLAB为仿真环境,该工具在工程计算、信号分析与通信模拟等领域具备广泛的应用基础。用户可根据自身安装的MATLAB版本选择相应程序文件。随附的案例数据便于快速验证系统功能与性能表现。代码设计注重可读性与可修改性,采用参数驱动方式,重要变量均设有明确注释,便于理解与后续调整。因此,该系统特别适合高等院校相关专业学生用于课程实践、专题研究或毕业设计等学术训练环节。 借助该仿真平台,学习者可深入探究水声通信的基础理论及其关键技术,具体掌握MIMO与OFDM技术在水声环境中的协同工作机制。同时,系统具备良好的交互界面与可扩展架构,用户可在现有框架基础上进行功能拓展或算法改进,以适应更复杂的科研课题或工程应用需求。整体而言,该系统为一套功能完整、操作友好、适应面广的水声通信教学与科研辅助工具。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
<think>嗯,用户问的是关于Bag-of-words模型的问题。我需要先回顾一下这个模型的基本概念和应用。Bag-of-words模型是自然语言处理中的一种常用方法,主要用于文本表示。它的核心思想是将文本看作是一个词汇的集合,忽略语法和顺序,只关注词的出现频率。 首先,我应该解释什么是Bag-of-words模型。比如,用户可能需要了解它如何将文本转换为向量表示。然后,给出一个代码示例,可能用Python的sklearn库中的CountVectorizer来实现。代码需要展示如何将一段文本转换为词袋模型的向量,并解释每个步骤的作用。 接下来,要详细解释代码中的关键部分,比如CountVectorizer的作用,fit_transform方法如何生成词频矩阵,以及特征名称对应的词汇表。用户可能对停用词的处理、n-gram的使用以及TF-IDF转换感兴趣,所以在解释部分需要提到这些扩展点。 然后,考虑用户可能的后续问题。比如,Bag-of-words的优缺点,与TF-IDF的区别,如何处理中文文本,处理大规模数据时的内存问题,以及如何结合n-gram。这些问题都是自然延伸出来的,可以提前准备好答案,或者至少列出相关问题供用户参考。 需要注意的是,代码示例要简洁明了,注释清楚,方便用户理解。同时,解释部分要覆盖模型的关键点,比如忽略词序、处理停用词的重要性,以及可能的信息丢失问题。还要提到常见的扩展方法,如使用TF-IDF来调整词的重要性,而不仅仅是词频。 可能用户没有提到中文处理,但这是一个常见的问题,所以在相关问题中可以加入。另外,内存优化对于处理大规模文本也很重要,比如使用稀疏矩阵或增量处理的方法。 最后,确保回答结构清晰,先回答问题,再给出代码和解释,最后列出相关问题。这样用户能够逐步深入,根据需要选择进一步的问题。</think>-of-words(词袋模型)是自然语言处理中最基础的文本表示方法,以下是用Python实现的基础版本: ```python from sklearn.feature_extraction.text import CountVectorizer # 示例文本数据 corpus = [ 'This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first document?', ] # 创建词袋模型转换器 vectorizer = CountVectorizer() # 训练模型并转换文本数据 X = vectorizer.fit_transform(corpus) # 查看词汇表 print("Vocabulary:", vectorizer.get_feature_names_out()) # 输出:['and' 'document' 'first' 'is' 'one' 'second' 'the' 'third' 'this'] # 查看转换后的向量表示 print("BoW representation:\n", X.toarray()) """ 输出: [[0 1 1 1 0 0 1 0 1] [0 2 0 1 0 1 1 0 1] [1 0 0 1 1 0 1 1 1] [0 1 1 1 0 0 1 0 1]] """ ``` 代码解释: 1. `CountVectorizer` 将文本转换为小写,自动进行分词 2. `fit_transform` 方法完成两个操作:学习词汇表 + 生成词频矩阵 3. 输出矩阵每行对应一个文档,每列对应一个单词的词频 4. 默认配置会忽略单字符单词,保留至少两个字母的单词 扩展功能实现: ```python # 带停用词和n-gram的词袋模型 vectorizer_advanced = CountVectorizer( stop_words='english', # 使用英文停用词 ngram_range=(1, 2), # 包含1-gram和2-gram max_features=100 # 限制最大特征数 ) # TF-IDF转换(更高级的加权方式) from sklearn.feature_extraction.text import TfidfVectorizer tfidf_vectorizer = TfidfVectorizer() tfidf_matrix = tfidf_vectorizer.fit_transform(corpus) ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值