题目:求1-n中与n互质的数的4次方之和
思路:容斥定理。
要用到公式:(1^4+2^4+……+n^4)=(n*(n+1)*(2n+1)*(3*n*n+3*n-1))/30
代码:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<algorithm>
#include<ctime>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<list>
#include<numeric>
using namespace std;
#define LL long long
#define ULL unsigned long long
#define INF 0x3f3f3f3f3f3f3f3f
#define mm(a,b) memset(a,b,sizeof(a))
#define PP puts("*********************");
template<class T> T f_abs(T a){ return a > 0 ? a : -a; }
template<class T> T gcd(T a, T b){ return b ? gcd(b, a%b) : a; }
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
// 0x3f3f3f3f3f3f3f3f
const LL MOD=1000000007;
const int maxn=1e5+50;
bool isprime[maxn];
int prime[maxn],tol;
LL Inv,sum;
int fac[maxn],cnt;
void make_prime(int n){
for(int i=0;i<=n;i++)
isprime[i]=true;
isprime[0]=isprime[1]=false;
tol=0;
for(int i=2;i<=n;i++){
if(isprime[i])
prime[tol++]=i;
for(int j=0;j<tol;j++){
if(i*prime[j]<=n)
isprime[i*prime[j]]=false;
else
break;
if(i%prime[j]==0)
break;
}
}
}
LL pow_mod(LL a,LL b){
LL res=1;
while(b){
if(b&1) res=res*a%MOD;
a=a*a%MOD;
b/=2;
}
return res;
}
LL pow4(LL n){
return n*n%MOD*n%MOD*n%MOD;
}
LL get_sum(LL n){
LL res=1;
res=res*n%MOD*(n+1)%MOD;
res=res*((2*n+1)%MOD)%MOD;
res=res*((3*n*n%MOD+3*n%MOD-1)%MOD)%MOD;
res=res*Inv%MOD;
res=(res+MOD)%MOD;
return res;
}
void dfs(int pos,int x,int num,LL n){
if(pos==cnt){
if(num&1){
sum-=get_sum(n/x)*pow4((LL)x)%MOD;
sum=(sum+MOD)%MOD;
}
else{
sum+=get_sum(n/x)*pow4((LL)x)%MOD;
sum=(sum+MOD)%MOD;
}
return;
}
dfs(pos+1,x*fac[pos],num+1,n);
dfs(pos+1,x,num,n);
}
int main(){
int T;
LL n;
make_prime(maxn-5);
Inv=pow_mod((LL)30,MOD-2);
scanf("%d",&T);
while(T--){
scanf("%lld",&n);
cnt=0;
LL m=n;
for(int i=0;i<tol&&prime[i]*prime[i]<=m;i++){
if(m%prime[i]==0){
fac[cnt++]=prime[i];
while(m%prime[i]==0)
m/=prime[i];
}
}
if(m>1)
fac[cnt++]=m;
sum=0;
dfs(0,1,0,n);
printf("%lld\n",sum);
}
return 0;
}