题目:给出N,求 ∑gcd(i, N) 1<=i <=N.
0<N<2^31
思路:
phi(p^k)=(p-1)*p^(k-1)
考虑如果N=P^k的时候,那么F[N]=k*p^(k-1)*(p-1)+p^k。
利用eular的积性性质
F[N]=F[p1^k1*p2^k2……pi^ki]=∑(ki*pi^(ki-1)+p^ki).
代码:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<algorithm>
#include<ctime>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<list>
#include<numeric>
using namespace std;
#define LL long long
#define ULL unsigned long long
#define INF 0x3f3f3f3f3f3f3f3f
#define mm(a,b) memset(a,b,sizeof(a))
#define PP puts("*********************");
template<class T> T f_abs(T a){ return a > 0 ? a : -a; }
template<class T> T gcd(T a, T b){ return b ? gcd(b, a%b) : a; }
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
// 0x3f3f3f3f3f3f3f3f
int main(){
LL n;
while(~scanf("%lld",&n)){
LL ans=1;
for(LL i=2;i*i<=n;i++){
LL p=1,k=0;
while(n%i==0){
p*=i;
k++;
n/=i;
}
ans*=k*(p-p/i)+p;
}
if(n>1)
ans*=2*n-1;
printf("%lld\n",ans);
}
return 0;
}