一个例子
求方程
y
′
′
+
y
=
0
y^{\prime \prime}+y=0
y′′+y=0的通解。
设方程的解为如下幂级数形式
y
(
x
)
=
∑
n
=
0
∞
a
n
x
n
(1)
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}\tag{1}
y(x)=n=0∑∞anxn(1)
代入方程,得
∑
n
=
2
∞
n
(
n
−
1
)
a
n
x
n
−
2
+
∑
n
=
0
∞
a
n
x
n
=
0
(2)
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty} a_{n} x^{n}=0\tag{2}
n=2∑∞n(n−1)anxn−2+n=0∑∞anxn=0(2)重新整理得
∑
n
=
0
∞
(
(
n
+
2
)
(
n
+
1
)
a
n
+
2
+
a
n
)
x
n
=
0
(3)
\sum_{n=0}^{\infty}\left((n+2)(n+1) a_{n+2}+a_{n}\right) x^{n}=0\tag{3}
n=0∑∞((n+2)(n+1)an+2+an)xn=0(3)
要使等式相等,则上式中 x x x各次幂的系数均为零。则有 a n + 2 = − a n ( n + 2 ) ( n + 1 ) , n = 0 , 1 , 2 , … (4) a_{n+2}=-\frac{a_{n}}{(n+2)(n+1)}, \quad n=0,1,2, \ldots\tag{4} an+2=−(n+2)(n+1)an,n=0,1,2,…(4)
由式可知,奇数和偶数项系数是各自成列的。具体的,对于偶数项系数有
a
0
,
a
2
=
−
1
2
a
0
,
a
4
=
−
1
4
⋅
3
a
2
=
1
4
!
a
0
(5)
a_{0}, \quad a_{2}=-\frac{1}{2} a_{0}, \quad a_{4}=-\frac{1}{4 \cdot 3} a_{2}=\frac{1}{4 !} a_{0}\tag{5}
a0,a2=−21a0,a4=−4⋅31a2=4!1a0(5)
对于奇数项系数有
a
1
,
a
3
=
−
1
3
⋅
2
a
1
,
a
5
=
−
1
5
⋅
4
a
3
=
1
5
!
a
1
(6)
a_{1}, \quad a_{3}=-\frac{1}{3 \cdot 2} a_{1}, \quad a_{5}=-\frac{1}{5 \cdot 4} a_{3}=\frac{1}{5 !} a_{1}\tag{6}
a1,a3=−3⋅21a1,a5=−5⋅41a3=5!1a1(6)
则幂级数解为
y
(
x
)
=
a
0
(
1
−
x
2
2
!
+
x
4
4
!
−
…
)
+
a
1
(
x
−
x
3
3
!
+
x
5
5
!
−
…
)
=
a
0
cos
x
+
a
1
sin
x
(7)
\begin{aligned} y(x) &=a_{0}\left(1-\frac{x^{2}}{2 !}+\frac{x^{4}}{4 !}-\ldots\right)+a_{1}\left(x-\frac{x^{3}}{3 !}+\frac{x^{5}}{5 !}-\ldots\right) \\ &=a_{0} \cos x+a_{1} \sin x \end{aligned}\tag{7}
y(x)=a0(1−2!x2+4!x4−…)+a1(x−3!x3+5!x5−…)=a0cosx+a1sinx(7)
这与解析方法得到的结果是一致的。
注:幂级数解的核心就是待定系数。