姿态旋转的哥氏定理以及速度微分的推导

姿态旋转中涉及到坐标系的转换,在有相对旋转的两个坐标系中观察一个向量的变化,用到了哥氏定理。

例如在i系中观察e系下的运动,则

哥氏定理的公式 

dr/dt|i = dr/dt|e + wie \times r   wie是e相对于i的角运动   注意符号i在前e在后。

dv/dt|i = dv/dt|e + wie \times v   wie是e相对于i的角运动   注意符号i在前e在后。

那么,回到组合中常用的n系下,推到一下n系下的速度微分方程

直接从i到n建立联系,需要先把i的求出来。

dv/dt|n = dvdt|i + wni \times v  (1)

上式中用到i系下的速度微分,那么就要再按照哥氏定理推一下dv/dt|i

分析,对速度求导,需要先知道速度,所以要对位置求导得到速度

dr/dt|i = dr/dt|e + wie \times r = v + wie \times r  (2)

得到v以后再次求导,得到(1中想要的dv/dt|i

比力是i系下的,是已知的数据,那么用到它就是需要对上式i系下再微分求导,

dr^{2}/dt^{^{2}}{}|i = dv/dt|i + dwie /dt|i\times r + wie \times dr/dt|i   (3)

dr^{2}/dt^{^{2}}{}|i =f+g  (4)

f+g =dv/dt|i + 0 +wie\times dr/dt|i  (5)

式5的移项后,

dv/dt|i = f+g -wie\times dr/dt|i  (6)

式6中的右边 ,把(2)代入后,即可得到

dv/dt|i = f+g -wie\times v-wie\times\left ( wie\ \times r\right )

gp=g- wie\times\left ( wie\ \times r\right )

  dv/dt|i = f -wie\times v+gp 这是i系下的微分方程 (7)

下面再回到n下的方程(1)中,从i直接到n

(7)代入(1)

dv/dt|n = f -wie\times v-gp + wni \times v  (8)

其中wni =wne+wei = wen-wie  (9)

(9)代入(8)得到

dv/dt|n = f -wie\times v+gp +\left ( wen-wie\right )\times v

整理得到

dv/dt|n =f- \left ( 2wie+wen \right )\times v+gp    (10)这是n系下的速度微分方程。

如果想要推到e系下的

思路如下:都是要用到i系,因为牛顿第二定律就是i系下的,所以得用i

dv/dt|e = dvdt|i + wei \times v(11)

(7)代入(11)

dv/dt|e = f -wie\times v+gp+ wei \times v 

dv/dt|e = f -wie\times v+gp- wie\times v

dv/dt|e = f -2wie\times v+gp  这是e系下的速度微分(12)

快速的得到n系,则可以选择,先i系,再e系用wie和wen建立联系,然后n系

dv/dt|i = f -wie\times v+gp 这是i系下的微分方程 (7)

dv/dt|e = f -2wie\times v+gp  这是e系下的速度微分(12)

dv/dt|n = dvdt|e + wne \times v  (13)

(12)代入13得到

dv/dt|n =f- \left ( 2wie+wen \right )\times v+gp    (10)这是n系下的速度微分方程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值