Jetpack6.2 Jetson orin nx GPIO配置输出python jetson-gpio控制

6.2以上的不能直接用jetson-gpio控制,需要配置过引脚才能用,写个笔记记录一下

解决问题的帖子引用

给出了两种方式,一种修改修Pinmux 配置后重新烧录系统。
另一种动态修改引脚配置,用busybox修改寄存器配置,官方修改方法

我这里用busybox修改,因为方便。

1. 获取引脚的 Pinmux 寄存器地址:

步骤 1:检查载板规格说明书。下载
引脚 31,对应 PQ.06
在这里插入图片描述

步骤 2:打开对应设备类型的引脚复用配置电子表格。下载
找到 PQ.06,对应SOC_GPIO33
在这里插入图片描述

步骤3:在 Orin 技术参考手册中找到与 SOC_GPIO33 对应的 PADCTL 寄存器。下载
在这里插入图片描述

2. busybox修改寄存器

配置GPIO11,BOARD编号33为输出
在这里插入图片描述

(1)上面查得:SOC_GPIO33:PQ6:
Pinmux 寄存器基地址为 0x2430000。

  • The Offset is 0x70.
  • The Pinmux register address is 0x2430070.

(2)查询寄存器。

busybox devmem 0x02430070

输出值为 0x00000454。

(3)修改寄存器,设置引脚为输出。

busybox devmem 0x02430070 w 0x004

3. python jetson-gpio控制

github地址:https://github.com/NVIDIA/jetson-gpio,照里面的安装
运行代码

import Jetson.GPIO as GPIO
import time

# Pin Definitions
output_pin = 31  

def main():
    # Pin Setup:
    GPIO.setmode(GPIO.BOARD)  # BCM pin-numbering scheme from Raspberry Pi
    # set pin as an output pin with optional initial state of HIGH
    GPIO.setup(output_pin, GPIO.OUT, initial=GPIO.HIGH)

    print("Starting demo now! Press CTRL+C to exit")
    curr_value = GPIO.HIGH
    try:
        while True:
            time.sleep(1)
            # Toggle the output every second
            print("Outputting {} to pin {}".format(curr_value, output_pin))
            GPIO.output(output_pin, curr_value)
            curr_value ^= GPIO.HIGH
    finally:
        GPIO.cleanup()

if __name__ == '__main__':
    main()

在这里插入图片描述

LED就在闪烁了

### HAL_TIM_PeriodElapsedCallback 函数功能与用法 #### 1. 功能描述 `HAL_TIM_PeriodElapsedCallback` 是 STM32 HAL 库中的回调函数,用于处理定时器周期结束事件。当定时器的计数值达到设定的最大值并触发更新事件时,该回调函数会被调用[^1]。 此函数的主要作用是在中断服务程序中被自动调用,允许用户在不修改底层驱动的情况下实现自定义逻辑。它通常用来响应特定的时间间隔到达后的动作,例如刷新数据、切换状态或其他实时任务调度[^2]。 --- #### 2. 定义形式 以下是 `HAL_TIM_PeriodElapsedCallback` 的典型定义: ```c void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { // 用户可以在此处编写自己的代码来处理定时器周期溢出事件 } ``` - **参数说明** - `TIM_HandleTypeDef *htim`: 这是一个指向定时器句柄结构体的指针,包含了配置和运行状态的信息。通过这个句柄,可以在回调函数内部访问当前定时器的相关属性或重新设置其行为。 --- #### 3. 使用方法 为了使能这一回调机制,需完成以下几个步骤: 1. 初始化定时器:利用 `HAL_TIM_Base_Init` 或其他初始化接口完成硬件资源分配以及基础参数配置(如预分频系数、计数器周期等)。 2. 启动带中断模式的定时器:调用 `HAL_TIM_Base_Start_IT(htim)` 来开启定时器及其关联的中断请求。这一步会启用相应的中断线,并注册默认的中断服务例程(ISR)[^1]。 3. 实现回调函数:根据实际需求重写 `HAL_TIM_PeriodElapsedCallback` 方法的内容。每当发生一次完整的计数循环后,即进入下一轮计数前,都会跳转到此处执行指定的操作[^3]。 4. 清除标志位/中断挂起比特 (可选): 如果需要手动管理某些特殊类型的干扰信号,则可能还需要借助宏指令如 __HAL_TIM_CLEAR_IT() 对应位置零操作。 --- #### 示例代码片段 下面展示了一个简单的应用案例——每秒钟点亮 LED 一次: ```c #include "stm32f4xx_hal.h" // 假设已正确设置了 GPIO 和 TIM 句柄 htim2 uint8_t led_state = 0; void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim){ if(htim->Instance == TIM2){ // 判断是否来自 TIM2 中断 if(led_state == 0){ HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, GPIO_PIN_SET); // 打开LED led_state = 1; } else { HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, GPIO_PIN_RESET); // 关闭LED led_state = 0; } } } int main(void){ /* MCU Initialization */ // 配置GPIO PA5作为输出端口 // 设置 TIM2 参数 TIM_HandleTypeDef timHandle; timHandle.Instance = TIM2; timHandle.Init.Prescaler = 8399; // 设定预分频值使得频率接近1KHz timHandle.Init.CounterMode = TIM_COUNTERMODE_UP; timHandle.Init.Period = 9999; // 计数至最大值约等于一秒 timHandle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; if(HAL_TIM_Base_Init(&timHandle) != HAL_OK){ Error_Handler(); } // 开启 IT 模式的定时器 HAL_TIM_Base_Start_IT(&timHandle); while(1); } ``` 上述例子展示了如何结合外部设备控制形成规律性的脉冲序列。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值