洛谷P1346 电车【SPFA】

本文介绍了一种解决电车司机在特定电车网络中从起点到终点最少需要切换开关次数的问题。通过使用SPFA算法,我们创建了一个程序,能够计算出从任意起点到终点所需的最小切换次数。该算法考虑了每个路口的默认开关状态,使得计算过程更加复杂但也更贴近实际。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

>Description
在一个神奇的小镇上有着一个特别的电车网络,它由一些路口和轨道组成,每个路口都连接着若干个轨道,每个轨道都通向一个路口(不排除有的观光轨道转一圈后返回路口的可能)。在每个路口,都有一个开关决定着出去的轨道,每个开关都有一个默认的状态,每辆电车行驶到路口之后,只能从开关所指向的轨道出去,如果电车司机想走另一个轨道,他就必须下车切换开关的状态。

为了行驶向目标地点,电车司机不得不经常下车来切换开关,于是,他们想请你写一个程序,计算一辆从路口A到路口B最少需要下车切换几次开关。


>Input
第一行有3个整数2<=N<=100,1<=A,B<=N,分别表示路口的数量,和电车的起点,终点。
接下来有N行,每行的开头有一个数字Ki(0<=Ki<=N-1),表示这个路口与Ki条轨道相连,接下来有Ki个数字表示每条轨道所通向的路口,开关默认指向第一个数字表示的轨道。

>Output
输出文件只有一个数字,表示从A到B所需的最少的切换开关次数,若无法从A前往B,输出-1。


>Sample Input
3 2 1
2 2 3
2 3 1
2 1 2

>Sample Output
0


>解题思路
SPFA模板题。
按照题目描述的那样,既然已给出了连接的车站的数量,那么就不用领接表这么麻烦了。
f[x][y]储存的是权值,第x个车站到它直接相连的第y个车站,如果y是默认开关(第一个数)就把权值设置为0(不用下车修改开关),否则为1。


>代码

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,aa,bb,a[105][105],c[105],st[305],head,tail;
bool yy[105],f[105][105];
int main()
{
	memset(f,1,sizeof(f));
	scanf("%d%d%d",&n,&aa,&bb);
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&a[i][0]);
		for(int j=1;j<=a[i][0];j++)
		 scanf("%d",&a[i][j]);
		f[i][a[i][1]]=0; //设置默认开关
	}
	memset(c,0x7f,sizeof(c));
	c[aa]=0; head=0; tail=1; st[1]=aa;
	do
	{
		head++;
		for(int i=1;i<=a[st[head]][0];i++)
		 if(c[st[head]]+f[st[head]][a[st[head]][i]]<c[a[st[head]][i]])
		 {
		 	c[a[st[head]][i]]=c[st[head]]+f[st[head]][a[st[head]][i]];
		 	if(!yy[a[st[head]][i]])
		 	{
		 		st[++tail]=a[st[head]][i];
		 		yy[a[st[head]][i]]=1;
		 	}
		 }
		 yy[st[head]]=0;
	}while(head<tail);
	if(c[bb]!=c[0]) printf("%d",c[bb]);
	else printf("-1");
	return 0;
}
### 关于洛谷 P1948 的分层最短路径问题 #### 问题背景 洛谷 P1948 是一道典型的 **分层图最短路径问题**。这类问题通常通过构建多个层次的图来模拟某些特殊条件下的状态转移,例如时间、费用或其他约束条件的变化。 --- #### 分层图的概念 分层图是一种扩展原图的方式,在原有基础上增加额外的状态维度(如层数)。每一层对应一种特定的状态或阶段,不同层之间可以通过某种规则相互连接[^3]。这种建模方式非常适合处理带有多重限制的最短路径问题。 --- #### 解题思路分析 对于该问题的核心在于如何利用已知算法求解分层图中的最短路径: 1. **模型转换** 将原始单层图转化为多层图,每层表示不同的状态变化。假设总共有 \( k \) 层,则每个节点会复制成 \( k \) 份,形成新的节点集合。相邻两层间按照题目给定的规则建立边的关系。 2. **适用算法选择** - 如果不存在负权边,可以采用 **Dijkstra 算法** 来高效求解。 ```python import heapq def dijkstra(graph, start_node): dist = {node: float('inf') for node in graph} dist[start_node] = 0 pq = [(0, start_node)] while pq: current_dist, u = heapq.heappop(pq) if current_dist > dist[u]: continue for v, weight in graph[u]: distance = current_dist + weight if distance < dist[v]: dist[v] = distance heapq.heappush(pq, (distance, v)) return dist ``` - 若存在负权边或者需要多次松弛操作验证更优解,则应选用 **Bellman-Ford 算法** 或其队列优化版本——**SPFA 算法**[^2]。 3. **初始化与边界条件** 设置初始点所在的具体位置以及目标终点的位置关系。特别需要注意的是,由于引入了更多虚拟节点和边,因此要仔细定义起始状态及其权重设置[^1]。 4. **复杂度考量** 构造后的分层图规模可能显著增大,需评估所选算法的时间开销是否会超出允许范围。一般情况下,\( O((V+E)\log V) \) 的 Dijkstra 性能优于线性的 Bellman-Ford (\(O(VE)\)) ,但在稀疏图上 SPFA 可能表现更好。 --- #### 示例实现代码 以下是基于 Python 的简单实现框架,展示如何应用上述方法解决问题: ```python from collections import deque, defaultdict def build_layered_graph(original_graph, layers_count, transition_rule): layered_graph = {} # 初始化各层节点并按规则连通它们 for layer in range(layers_count): for node in original_graph.keys(): key = (layer, node) if key not in layered_graph: layered_graph[key] = [] # 添加同层邻居 for neighbor, cost in original_graph[node]: next_key = (layer, neighbor) layered_graph[key].append((next_key, cost)) # 根据transition rule跨层链接 new_layer, extra_cost = transition_rule(layer, node) if new_layer >= 0 and new_layer < layers_count: cross_key = (new_layer, node) layered_graph[key].append((cross_key, extra_cost)) return layered_graph def spfa(graph, source): distances = defaultdict(lambda : float('inf')) predecessors = {} queue = deque() distances[source] = 0 queue.append(source) while queue: current = queue.popleft() for neighbor, edge_weight in graph.get(current, []): potential_new_distance = distances[current] + edge_weight if potential_new_distance < distances[neighbor]: distances[neighbor] = potential_new_distance predecessors[neighbor] = current if neighbor not in queue: queue.append(neighbor) return dict(distances), predecessors ``` --- #### 注意事项 - 转化过程中务必保持逻辑一致性,确保新增加的边满足实际意义; - 对大规模输入数据预估运行效率,必要时采取剪枝策略减少冗余运算; ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值