题意:求 ∑ i = 1 n l c m ( i , n ) \sum_{i=1}^n lcm(i,n) ∑i=1nlcm(i,n)
考虑到 l c m lcm lcm无法处理,把 l c m lcm lcm换成 g c d gcd gcd
即 a n s = ∑ i = 1 n i ∗ n g c d ( i , n ) ans=\sum_{i=1}^{n}\frac {i*n}{gcd(i, n)} ans=i=1∑ngcd(i,n)i∗n
考虑由于辗转相减法
g
c
d
(
i
,
n
)
=
g
c
d
(
n
−
i
,
n
)
gcd(i,n)=gcd(n-i,n)
gcd(i,n)=gcd(n−i,n)
把
∑
\sum
∑内的前后两两配对
则 a n s = 1 2 ( ∑ i = 1 n − 1 i ∗ n g c d ( i , n ) + ∑ i = 1 n − 1 ( n − i ) ∗ n g c d ( n − i , n ) ) + n ans=\frac 1 2 (\sum_{i=1}^{n-1} \frac {i*n}{gcd(i,n)}+\sum_{i=1}^{n-1} \frac {(n-i)*n} {gcd(n-i,n)})+n ans=21(i=1∑n−1gcd(i,n)i∗n+i=1∑n−1gcd(n−i,n)(n−i)∗n)+n(因为 i = n i=n i=n时对应的为 n − i = 0 n-i=0 n−i=0,所以单独提出来处理)
合并得:
a n s = 1 2 ( ∑ i = 1 n − 1 n 2 g c d ( i , n ) ) + n ans=\frac {1}{2}(\sum_{i=1}^{n-1}\frac{n^2}{gcd(i,n)})+n ans=21(i=1∑n−1gcd(i,n)n2)+n
考虑枚举 g c d ( i , n ) gcd(i,n) gcd(i,n)
a n s = 1 2 ( ∑ d ∣ n & d ̸ = n n 2 d ∑ i = 1 n − 1 [ g c d ( i , n ) = d ] ) ans=\frac 1 2 (\sum_{d|n\&d\not=n}\frac {n^2}d \sum_{i=1}^{n-1}[gcd(i,n)=d]) ans=21(d∣n&d̸=n∑dn2i=1∑n−1[gcd(i,n)=d])
把框里的 d d d消去
a n s = 1 2 ( ∑ d ∣ n & d ̸ = 1 n 2 d ∑ i = 1 n d [ g c d ( i , n d ) = 1 ] ) ans=\frac 1 2 (\sum_{d|n\&d\not=1} \frac {n^2}d\sum_{i=1}^{\frac n d}[gcd(i,\frac n d)=1]) ans=21(d∣n&d̸=1∑dn2i=1∑dn[gcd(i,dn)=1])
发现 ∑ i = 1 n d [ g c d ( i , n d ) = 1 ] = ϕ ( n d ) \sum_{i=1}^{\frac n d}[gcd(i,\frac n d)=1]=\phi(\frac n d) i=1∑dn[gcd(i,dn)=1]=ϕ(dn)
则 a n s = 1 2 ( ∑ d ∣ n & d ̸ = 1 n 2 d ϕ ( n d ) ) ans=\frac 1 2(\sum_{d|n\&d\not=1} \frac {n^2}{d}\phi(\frac n d)) ans=21(d∣n&d̸=1∑dn2ϕ(dn))
我们枚举每个 d d d,暴力更新它的所有倍数就可以 O ( 1 ) O(1) O(1)回答了
复杂度 O ( n l o g n ) O(nlogn) O(nlogn)
代码:
#include<bits/stdc++.h>
using namespace std;
inline int read(){
char ch=getchar();
int res=0,f=1;
while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
while(isdigit(ch))res=(res<<3)+(res<<1)+(ch^48),ch=getchar();
return res*f;
}
#define int long long
const int N=1000006;
int n,phi[N],pr[N],vis[N],tot,g[N];
inline void init(){
phi[1]=1;
for(int i=2;i<N;i++){
if(!vis[i])pr[++tot]=i,phi[i]=i-1;
for(int j=1;j<=tot&&pr[j]*i<N;j++){
vis[i*pr[j]]=1;
if(i%pr[j]==0){
phi[i*pr[j]]=phi[i]*pr[j];break;
}
phi[i*pr[j]]=phi[i]*phi[pr[j]];
}
}
for(int i=2;i<N;i++){
for(int j=1;i*j<N;j++){
g[i*j]+=i*phi[i];
}
}
for(int i=1;i<N;i++)g[i]=g[i]*i/2+i;
}
signed main(){
init();int T=read();
while(T--){
cout<<g[read()]<<'\n';
}
}