1.三角函数的积分以及三角替换
三角学常用函数:
- sin2Θ+cos2Θ=1sin^2\Theta +cos^2\Theta=1sin2Θ+cos2Θ=1
- cos(2Θ)=cos2Θ−sin2Θcos(2\Theta)=cos^2\Theta-sin^2\Thetacos(2Θ)=cos2Θ−sin2Θ
- sin(2Θ)=2sinΘcosΘsin(2\Theta)=2sin\Theta cos \Thetasin(2Θ)=2sinΘcosΘ
半角公式:
cos(2Θ)=cos2Θ−sin2Θ=cos2Θ−(1−cos2Θ)=2cos2(2Θ)−1cos(2\Theta)=cos^2\Theta-sin^2\Theta\\
=cos^2\Theta-(1-cos^2\Theta)\\
=2cos^2(2\Theta)-1cos(2Θ)=cos2Θ−sin2Θ=cos2Θ−(1−cos2Θ)=2cos2(2Θ)−1
可以得知:
cos2Θ=1+cos(2Θ)2sin2Θ=1−cos(2Θ)2dsinx=(cosx)dx⇒∫cosxdx=sinx+Cdcosx=(−sinx)dx⇒∫sinxdx=−cosx+Ccos^2\Theta=\frac{1+cos(2\Theta)}{2}\\
sin^2\Theta=\frac{1-cos(2\Theta)}{2}\\
dsinx=(cosx)dx\Rightarrow \int cosx dx=sinx+C\\
dcosx=(-sinx)dx\Rightarrow \int sinx dx=-cosx+C\\
cos2Θ=21+cos(2Θ)sin2Θ=21−cos(2Θ)dsinx=(cosx)dx⇒∫cosxdx=sinx+Cdcosx=(−sinx)dx⇒∫sinxdx=−cosx+C
Ex:
∫sinn(x)cosm(x)dx(m,n=0,1,2.....)\int sin^n(x)cos^m(x)dx(m,n=0,1,2.....)∫sinn(x)cosm(x)dx(m,n=0,1,2.....)m,n至少有一个奇数.
(1)m=1m=1m=1
令u=sinxu=sinxu=sinx,则:
∫sinn(x)cosxdx=∫undx=∫undu=un+1n+1+C=(sinx)n+1n+1+C\int sin^n(x)cosxdx=\int u^n dx\\
=\int u^n du\\
=\frac{u^{n+1}}{n+1}+C\\
=\frac{(sinx)^{n+1}}{n+1}+C∫sinn(x)cosxdx=∫undx=∫undu=n+1un+1+C=n+1(sinx)n+1+C
(2)n=3,m=2n=3,m=2n=3,m=2
∫sin3xcos2xdx=∫(1−cos2x)sinxcos2xdx=∫(cos2x−cos4x)sinxdx令u=cosx,du=−sinxdx=∫(u2−u4)(−du)=15u5−13u3+C=15(cosx)5−13(cosx)3+C\int sin^3x cos^2x dx\\
=\int(1-cos ^2x)sinx cos^2xdx\\
=\int(cos^2x-cos^4x)sinxdx\\
令u=cosx,du=-sinxdx\\
=\int(u^2-u^4)(-du)\\
=\frac{1}{5}u^5-\frac{1}{3}u^3+C\\
=\frac{1}{5}(cosx)^5-\frac{1}{3}(cosx)^3+C∫sin3xcos2xdx=∫(1−cos2x)sinxcos2xdx=∫(cos2x−cos4x)sinxdx令u=cosx,du=−sinxdx=∫(u2−u4)(−du)=51u5−31u3+C=51(cosx)5−31(cosx)3+C
(3)n=3,m=0n=3,m=0n=3,m=0
∫sin3xdx=∫(1−cos2x)sinxdx令u=cosx,du=−sinxdx=∫(1−u2)x(−du)=13u3−u+C=13(cosx)3−cosx+C\int sin^3xdx\\
=\int(1-cos^2x)sinxdx\\
令u=cosx,du=-sinxdx\\
=\int(1-u^2)x(-du)\\
=\frac{1}{3}u^3-u+C\\
=\frac{1}{3}(cosx)^3-cosx+C∫sin3xdx=∫(1−cos2x)sinxdx令u=cosx,du=−sinxdx=∫(1−u2)x(−du)=31u3−u+C=31(cosx)3−cosx+C
半角公式的使用:
∫cos2xdx=∫1+cos(2x)2dx=12x+sin(2x)4+C\int cos^2xdx=\int \frac{1+cos(2x)}{2}dx\\
=\frac{1}{2}x+\frac{sin(2x)}{4}+C∫cos2xdx=∫21+cos(2x)dx=21x+4sin(2x)+C
Ex:
∫sin2cos2dx=∫(1−cos(2x)2)(1+cos(2x)2)dx=∫1−cos2(2x)4dx=∫(14−1+cos(4x)4∗2)dx=∫(18−cos4x8)dx=18x−sin4x8+C\int sin^2cos^2dx\\
=\int(\frac{1-cos(2x)}{2})(\frac{1+cos(2x)}{2})dx\\
=\int\frac{1-cos^2(2x)}{4}dx\\
=\int(\frac{1}{4}-\frac{1+cos(4x)}{4*2})dx\\
=\int(\frac{1}{8}-\frac{cos4x}{8})dx\\
=\frac{1}{8}x-\frac{sin4x}{8}+C∫sin2cos2dx=∫(21−cos(2x))(21+cos(2x))dx=∫41−cos2(2x)dx=∫(41−4∗21+cos(4x))dx=∫(81−8cos4x)dx=81x−8sin4x+C
Ex
sin2xcos2x=(sinxcosx)2=(sin(2x)2)2=sin2(2x)4=14(1−cos(4x)2)sin^2xcos^2x=(sinxcosx)^2\\
=(\frac{sin(2x)}{2})^2\\
=\frac{sin^2(2x)}{4}\\
=\frac{1}{4}(\frac{1-cos(4x)}{2})sin2xcos2x=(sinxcosx)2=(2sin(2x))2=4sin2(2x)=41(21−cos(4x))
三角替换:
∫a2−y2dy=∫(acosΘ)(acosΘdΘ)=a2∫cos2ΘdΘ=a2(Θ2+sin(2Θ)4)+C\int \sqrt{a^2-y^2}dy\\
=\int(acos\Theta)(acos\Theta d\Theta)\\
=a^2\int cos^2 \Theta d\Theta\\
=a^2 (\frac{\Theta}{2}+\frac{sin(2\Theta)}{4})+C∫a2−y2dy=∫(acosΘ)(acosΘdΘ)=a2∫cos2ΘdΘ=a2(2Θ+4sin(2Θ))+C