多目标优化与城市固废预测:技术融合与应用探索
多目标优化在NOMA - IoT网络中的应用
在NOMA - IoT网络中,最大化网络总速率和最小化功耗可被构建为多目标优化(MOO)问题。为解决这一问题,提出了MOGA - RL算法,以下是该算法的详细介绍。
MOGA - RL算法
Algorithm 2: MOGA - RL
Input: Population size = max_pop, Maximum number of generation = max_gen, MOO problem
1 Initialize:
2 foreach s, a ∈Q −Table do
3 Initialize: Q(s,a)
4 t ←0
5 Generate random population set of size max_pop
6 for t ←1 to max_gen do
7 Evaluate fitness of the population based on step 2 of Algorithm 1
8 Apply ε - Greedy Action Selection policy
9 Generate off - spring population of size max_pop with ac, am
10 Obtain reward for each combination of ac, am
11 Update Q - Table
12 Use selection to generate chromosomes for next generation b
超级会员免费看
订阅专栏 解锁全文

18万+

被折叠的 条评论
为什么被折叠?



