目录
图像在形成、传输和记录过程中,由于受到多种原因的影响,图像的质量就会有所下降,典型的表现为图像模糊、失真、有噪声等,这一过程称为图像的退化。图像复原是试图利用退化过程的先验知识使已退化的图像恢复本来面目,即根据退化的原因,分析引起退化的环境因素,建立相应的数学模型,并沿着使图像降质的逆过程恢复图像。目的在于消除或减轻在图像获取以及传输的过程中造成的图像品质下降,恢复图像的本来面目。因此,复原技术就是把退化模型化,并采用相反的过程进行处理,以便尽可能复原被退化图像的本来面目。广义上讲,图像复原是一个求逆问题,逆问题经常存在非唯一解,甚至无解。要想恢复全真的景物图像比较困难。为了得到逆问题的有用解,图像复原本身往往需要一个质量标准,即衡量接近全真景物图像的程度,或者说,对图像的估计是否达到最佳的程度。需要有先验知识以及对解的附加约束条件。
1.图像退化
图像的生成可以被描述为如下数学模型:
图像f(x,y)可以表示为:
用卷积符号* 表示为:
因此还有:
2.逆滤波复原
逆滤波复原法也叫做反向滤波法,其主要过程是首先将要处理的数字图像从空间域转换到傅里叶频域中,进行反向滤波后再由频率域转回到空间域,从而得到复原的图像信号。
在不考虑噪声的情况下
进行傅里叶变换得
然后进行傅里叶逆变换,就可以得到原始图像。
退化图像的傅里叶变换和“滤波”传递函数,则可以求得原始图像的傅里叶变换,经反傅里叶变换就可以求得原始图像f(x,y),这就是逆滤波法的基本原理。但在实际中用逆滤波法存在病态的情况:当H(u,v)=0时,或非常小的数值点上,F(u,v)将变成无穷大或非常大的数。
当退化图像的噪声较小,即轻度降质时,采用逆滤波复原的方法可以获得较好的结果。通常,在离频率平面原点较远的地方数值较小或为零,因此图像复原在原点周围的有限区域内进行,即将退化图像的傅里叶频谱限制在没出零点而且数值又不是太小的有限范围内。
3.维纳滤波复原
逆滤波比较简单,但没有清楚地说明如何处理噪声,而维纳滤波综合了退化函数和噪声统计特性两个方面进行复原处理。维纳滤波是维纳在1949年提出的,并应用于一维平稳时间序列,获得了满意的结果。这是最早也是最著名的线性滤波技术。
采用维纳滤波是假设图像信号可以近似看成平稳随机过程的前提下,按照使f(x,y)和f(x,y) 之间的均方误差达到最小的准则函数来实现图像复原的,即
式中,E(∙ )代表求期望值。因此维纳滤波又称为最小均方误差滤波器。
维纳滤波的复原滤波函数,即滤波器的传递函数为:
没有噪声时,维纳滤波退化为逆滤波。有噪声时,维纳滤波利用信噪功率比对恢复过程进行修正,在信噪功率比很小的区域内,P(u,v)的值也很小,这使恢复图像较小地依赖于退化图像。
在实际系统中,维纳滤波经常用下式近似:
①的维纳滤波要求未退化图像和噪声的功率必须是已知的。虽然用②近似的方法能得到好的结果,但功率谱比常数K的估计一般没有合适的解。
4.Lucy-Richardson算法迭代非线性复原
L-R算法是一种迭代非线性复原算法,它是从最大似然公式印出来的,图像用泊松分布加以模型化的。当下面这个迭代收敛时模型的最大似然函数就可以得到一个令人满意的方程:
*代表卷积, f^代表未退化图像的估计,g和h和以前定义一样。这个算法的本质是显而易见的。它的非线性本质是在方程右边用 f^来除产生的。
在IPT中,L-R算法是由名为deconvlucy的函数完成的,此函数的语法为
fr= deconvlucy(g,PSF,NUMIT,DAMPAR,WEIGHT)
其中,fr代表复原的图像,g代表退化的图像,PSF是点扩散函数,NUMIT为迭代次数(默认为10次),DAMPAR是一个标量,它指定了结果图像与原图像g之间的偏离阈值。WEIGHT是一个与g同样大小的数组,它为每一个像素分配一个权重来反映其重量。
5.图像重建
图像处理中的一个重要研究分支是物体图像的重建,它被广泛的应用于检测和观察中,而这种重建方法一般是根据物体的一些横截面部分的投影而进行的。在一些应用中,某个物体的内部结构图像的检测只能通过这种重建才不会有任何物理上的损伤。由于这种无损检测技术的显著优点,因此,它的适用面非常广泛,它在各个不同的领域都显示出独特的重要性。例如:医疗放射学、核医学、电子显微、无线和雷达天文学、光显微和全息成像学及理论视觉等等领域都有应用。在医学影像处理中是医学图像获取的重要方法。如医疗放射学、核医学,电子显微等领域是必不可少的技术,在工业生产中的无损检测技术图像重建也扮演重要的角色。
傅里叶反投影重建方法可以说是最简单的一种变换重建方法,一个三维(或二维)物体,它的二维(或一维)投影的傅里叶变换恰好与此物体的傅里叶变换的主题部分相等,傅里叶变换的重建方法正是以此为基础的。该重建方法最早于1974年由Shepp和Logan提出,该方法是建立在“投影切片定理”这一理论基础之上的。根据此结论,可以先对投影进行旋转和傅里叶变换以构造整个傅里叶变换域中的各个方向的切片数据,然后再对其进行傅里叶反变换即可得到重建后的目标(原空间域中的图像)。