基于模糊神经网络PID算法的液位串级控制

针对二阶液位系统的非线性和时滞性特点,提出一种结合模糊控制与神经网络的PID控制方法。该方法利用模糊控制的鲁棒性及神经网络的学习能力,通过模糊化模块预处理输入,神经网络自动生成和调整PID参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

由于二阶液位系统具有一定的非线性和时滞性的特点,所以普通PID算法的控制效果并不理想。神经网络有自学习能力和大规模并行处理能力,在认知处理上比较擅长;模糊控制系统能够充分利用学科领域的知识,能以较少的规则数来表达知识,在技能处理上比较擅长[1][2]。模糊神经网络控制算法是神经网络算法和模糊算法的有机结合,该算法既有模糊算法控制灵活和鲁棒性强的优点,又具有较强的非线性跟踪学习能力,有很大的实际意义和广阔的应用前景。

 

       模糊神经网络PID控制器的结构如图1所示。控制器由三部分组成:1模糊化模块:用来对系统状态变量进行模糊量化和归一化处理[2][3]。这样做可以利用模糊控制的鲁棒性和非线性控制作用,对作为神经网络输入的状态变量进行模糊规则的预处理,避免了神经网络的活化函数采样Sigmoid函数时,直接输入量过大而造成的输出饱和,使输出不再对输入敏感的缺点。2神经网络(NN):用于表示模糊规则,经过神经网络的学习,以加权系数的形式表现出来,规则的生成就转化为加权系数初值的生成和修改。根据系统的运行状态,自行整定PID参数,以期达到最优的控制效果。也就是将神经网络的输出层输出对应于PID控制期的三个可调参数、、,通过神经网络的自学习,加权系数的调整,从而使稳定状态对应于某种最优控制下的PID参数。3普通PID控制器:直接对控制对象进行闭环控制,并且、、三个参数为在线整定式[3]。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值