一个完整的方案,介绍如何使用奥比中光(Orbbec)双目摄像头获取物品位置并实现机器人抓取功能。
1. 系统架构概述
text
[奥比中光摄像头] → [点云数据处理] → [物品识别定位] → [运动规划] → [机械臂控制]
2. 硬件准备
-
奥比中光 Astra/Astra Pro 或 Femto 系列深度摄像头
-
ROS2兼容的机械臂(如UR, Franka, xArm等)
-
计算平台(如NVIDIA Jetson或高性能PC)
3. ROS2软件配置
3.1 安装奥比中光ROS2驱动
bash
sudo apt install ros-${ROS_DISTRO}-libuvc-camera
sudo apt install ros-${ROS_DISTRO}-camera-calibration
# 从源码安装Orbbec ROS2驱动
mkdir -p ~/orbbec_ws/src
cd ~/orbbec_ws/src
git clone https://github.com/orbbec/ros2_astra_camera.git
cd ..
rosdep install --from-paths src --ignore-src -r -y
colcon build --symlink-install
source install/setup.bash
3.2 启动摄像头节点
bash
ros2 launch astra_camera astra.launch.py
4. 物品识别与定位实现
4.1 创建ROS2包
bash
ros2 pkg create object_grasping --build-type ament_cmake \ --dependencies rclcpp rclcpp_components cv_bridge image_transport \ pcl_conversions pcl_ros tf2 tf2_ros tf2_geometry_msgs moveit_core \ moveit_ros_planning_interface
4.2 物品检测节点实现 (C++)
src/object_detector.cpp:
cpp
#include <rclcpp/rclcpp.hpp>
#include <sensor_msgs/msg/image.hpp>
#include <sensor_msgs/msg/point_cloud2.hpp>
#include <vision_msgs/msg/detection3_d_array.hpp>
#include <cv_bridge/cv_bridge.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl_conversions/pcl_conversions.h>
#include <pcl/filters/passthrough.h>
#include <pcl/segmentation/extract_clusters.h>
class ObjectDetector : public rclcpp::Node
{
public:
ObjectDetector() : Node("object_detector")
{
// 订阅深度点云
pointcloud_sub_ = this->create_subscription<sensor_msgs::msg::PointCloud2>(
"/camera/depth/points", 10,
std::bind(&ObjectDetector::pointcloudCallback, this, std::placeholders::_1));
// 发布检测结果
detection_pub_ = this->create_publisher<vision_msgs::msg::Detection3DArray>(
"/detected_objects", 10);
// 参数声明
this->declare_parameter("cluster_tolerance", 0.02);
this->declare_parameter("min_cluster_size", 100);
this->declare_parameter("max_clus

最低0.47元/天 解锁文章
1372

被折叠的 条评论
为什么被折叠?



