题目链接:https://www.luogu.com.cn/problem/P6190
题目大意:给定一个
n
n
n个点
m
m
m条边的图,你有
k
k
k次施展魔法的机会,每次施展魔法可以让经过下一条边的权值在这一刻取负,求从
1
1
1到
n
n
n的最小花费
考虑动态规划,设
d
p
[
i
]
[
j
]
[
k
]
dp[i][j][k]
dp[i][j][k]表示从
i
i
i到
j
j
j使用
k
k
k次魔法的最小花费。
d
p
[
i
]
[
j
]
[
k
]
=
m
i
n
(
d
p
[
i
]
[
u
]
[
k
−
1
]
+
d
p
[
u
]
[
j
]
[
1
]
,
d
p
[
i
]
[
u
]
[
1
]
+
d
p
[
u
]
[
j
]
[
k
−
1
]
)
dp[i][j][k]=min(dp[i][u][k-1]+dp[u][j][1],dp[i][u][1]+dp[u][j][k-1])
dp[i][j][k]=min(dp[i][u][k−1]+dp[u][j][1],dp[i][u][1]+dp[u][j][k−1])
用
f
l
o
y
e
d
floyed
floyed求出只用
0
0
0或
1
1
1次魔法的最小花费
但直接循环枚举
k
k
k最后会
T
T
T
然后就是重点了
设
F
[
k
]
F[k]
F[k]代表由花费
k
k
k次魔法整个图的转移矩阵
F
[
K
]
=
F
[
K
−
1
]
∗
F
[
1
]
F[K]=F[K-1]*F[1]
F[K]=F[K−1]∗F[1]
但这个乘法不是普通的乘法,而是我们所定义的
C
=
A
∗
B
C=A*B
C=A∗B
C
[
i
]
[
j
]
=
m
i
n
(
A
[
i
]
[
k
]
+
B
[
k
]
[
j
]
,
B
[
i
]
[
k
]
+
A
[
k
]
[
j
]
)
C[i][j]=min(A[i][k]+B[k][j],B[i][k]+A[k][j])
C[i][j]=min(A[i][k]+B[k][j],B[i][k]+A[k][j])
我们发现这种运算满足结合律
证:考虑三个矩阵的乘法
D
=
A
∗
B
∗
C
D=A*B*C
D=A∗B∗C,
F
=
A
∗
B
F=A*B
F=A∗B考虑每一个
D
D
D中每一个元素
D
[
i
]
[
j
]
=
m
i
n
(
F
[
i
]
[
k
]
+
C
[
k
]
[
j
]
,
C
[
i
]
[
k
]
+
F
[
k
]
[
j
]
)
D[i][j]=min(F[i][k]+C[k][j],C[i][k]+F[k][j])
D[i][j]=min(F[i][k]+C[k][j],C[i][k]+F[k][j])
D
[
i
]
[
j
]
=
m
i
n
(
m
i
n
(
A
[
i
]
[
u
]
+
B
[
u
]
[
k
]
,
A
[
u
]
[
k
]
+
B
[
i
]
[
u
]
)
+
C
[
k
]
[
j
]
,
C
[
i
]
[
k
]
+
m
i
n
(
A
[
k
]
[
u
]
+
B
[
u
]
[
j
]
,
B
[
k
]
[
u
]
+
A
[
u
]
[
j
]
)
)
D[i][j]=min(min(A[i][u]+B[u][k],A[u][k]+B[i][u])+C[k][j],C[i][k]+min(A[k][u]+B[u][j],B[k][u]+A[u][j]))
D[i][j]=min(min(A[i][u]+B[u][k],A[u][k]+B[i][u])+C[k][j],C[i][k]+min(A[k][u]+B[u][j],B[k][u]+A[u][j]))
而由此可得:对于任意的
D
[
i
]
[
j
]
=
m
i
n
(
A
[
i
]
[
u
]
+
B
[
u
]
[
k
]
+
C
[
k
]
[
j
]
.
.
.
)
D[i][j]=min(A[i][u]+B[u][k]+C[k][j]...)
D[i][j]=min(A[i][u]+B[u][k]+C[k][j]...)
(剩下的式子就不写了)
提示:利用
m
i
n
(
a
,
b
)
+
c
=
m
i
n
(
a
+
c
,
b
+
c
)
min(a,b)+c=min(a+c,b+c)
min(a,b)+c=min(a+c,b+c)
意思就是这个定义的乘法最终是A,B,C某些行列上的线性组合的最小值
结合律就得证了
就可以快速幂了
C o d e Code Code
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int MAXN=100,inf=1e15;
struct Matrix{
int m,n;
int g[MAXN+10][MAXN+10];
inline Matrix(){m=0,n=0;}
}I;
int g[MAXN+10][MAXN+10];
Matrix operator * (const Matrix &A,const Matrix &B){
Matrix C;
C.m=A.m,C.n=B.n;
for (register int i=1;i<=C.m;++i)
for (register int j=1;j<=C.n;++j){
C.g[i][j]=inf;
for (register int k=1;k<=A.n;++k){
C.g[i][j]=min(C.g[i][j],A.g[i][k]+B.g[k][j]);
C.g[i][j]=min(C.g[i][j],B.g[i][k]+A.g[k][j]);
}
}
return C;
}
inline int read();
Matrix fastpow(Matrix,int);
signed main(){
//freopen ("std.in","r",stdin);
//freopen ("std.out","w",stdout);
int n,m,k;
n=read(),m=read(),k=read();
for (register int i=1;i<=m;++i){
int x=read(),y=read(),z=read();
g[x][y]=z;
}
for (register int i=1;i<=n;++i)
for (register int j=1;j<=n;++j){
if (i!=j && !g[i][j]) g[i][j]=I.g[i][j]=inf;
else I.g[i][j]=-g[i][j];
}
for (register int k=1;k<=n;++k)
for (register int i=1;i<=n;++i)
for (register int j=1;j<=n;++j)
g[i][j]=min(g[i][j],g[i][k]+g[k][j]);
if (!k){
printf("%lld\n",g[1][n]);
return 0;
}
I.m=n,I.n=n;
for (register int k=1;k<=n;++k)
for (register int i=1;i<=n;++i)
for (register int j=1;j<=n;++j){
I.g[i][j]=min(I.g[i][j],I.g[i][k]+g[k][j]);
I.g[i][j]=min(I.g[i][j],g[i][k]+I.g[k][j]);
}
if (k>=2){
Matrix ans=fastpow(I,k);
printf("%lld\n",ans.g[1][n]);
}
else printf("%lld\n",I.g[1][n]);
return 0;
}
inline int read(){
int x=0;
char c=getchar();
while (!isdigit(c))c=getchar();
while (isdigit(c))x=(x<<1)+(x<<3)+(c&15),c=getchar();
return x;
}
Matrix fastpow(Matrix A,int p){
Matrix ans=A; --p;
while (p){
if (p&1) ans=ans*A;
A=A*A;
p>>=1;
}
return ans;
}