题目大意:告诉你平面上n个点的两两距离,构造这n个点,保证有解。
题解:先把距离为0的点缩起来,特判剩余点小于等于2的情况,然后任意选择三个点先算个三角形,然后剩下的点都是唯一的(应该是唯一的)。
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define Rep(i,v) rep(i,0,(int)v.size()-1)
#define lint long long
#define ull unsigned lint
#define db long double
#define pb push_back
#define mp make_pair
#define fir first
#define sec second
#define gc getchar()
#define debug(x) cerr<<#x<<"="<<x
#define sp <<" "
#define ln <<endl
using namespace std;
typedef pair<int,int> pii;
typedef set<int>::iterator sit;
inline int inn()
{
int x,ch;while((ch=gc)<'0'||ch>'9');
x=ch^'0';while((ch=gc)>='0'&&ch<='9')
x=(x<<1)+(x<<3)+(ch^'0');return x;
}
const int N=110;const db eps=1e-5;
inline db sgn(db x) { return x<-eps?-1:(x>eps); }
inline db gabs(db x) { return x<0?-x:x; }
inline db indb() { double x;scanf("%lf",&x);return x; }
struct P{
db x,y;P(db _x=0,db _y=0) { x=_x,y=_y; }
inline P operator+(const P &p)const { return P(x+p.x,y+p.y); }
inline P operator-(const P &p)const { return P(x-p.x,y-p.y); }
inline P operator*(db t)const { return P(x*t,y*t); }
inline P operator/(db t)const { return P(x/t,y/t); }
inline db dis(const P &p)const { return sqrt((x-p.x)*(x-p.x)+(y-p.y)*(y-p.y)); }
inline P rot(db b)const { return P(x*cos(b)-y*sin(b),x*sin(b)+y*cos(b)); }
inline int print()const { return printf("%.6lf %.6lf\n",double(x),double(y)); }
inline int show()const { return cerr<<"("<<double(x)<<", "<<double(y)<<")"<<endl,0; }
}p[N],p2;int id[N],ndc[N];db dis[N][N];
inline int getcirint(const P &a,db d2,const P &b,db d3,P &ans1,P &ans2)
{
db d1=a.dis(b),dl=(d1*d1+d2*d2-d3*d3)/2/d1,alp=acos(dl/d2);
return ans1=(b-a).rot(alp)/d1*d2,ans2=(b-a).rot(-alp)/d1*d2,0;
}
inline int ok(int n)
{
rep(i,1,n-1)
{
int a=id[i],b=id[n];
if(sgn(p[a].dis(p[b])-dis[a][b])!=0) return 0;
}
return 1;
}
inline int check_ok(int n) { rep(i,2,n) if(!ok(i)) return 0;return 1; }
inline int solve(int n)
{
rep(i,1,n) id[i]=i;random_shuffle(id+1,id+n+1);
int a=id[1],b,c;p[a]=P(0,0);
ndc[id[1]]=0;rep(i,2,n) ndc[id[i]]=1;
rep(i,2,n) if(dis[a][b=id[i]]<eps) p[b]=p[a],ndc[b]=0;
b=0;rep(i,2,n) if(ndc[id[i]]) { b=i;break; }
if(!b) { rep(i,1,n) p[i].print();return 1; }
swap(id[2],id[b]),b=id[2],p[b]=P(0,dis[a][b]),ndc[b]=0;
rep(i,3,n) if(ndc[id[i]]&&dis[a][c=id[i]]<eps) p[c]=p[a],ndc[c]=0;
rep(i,3,n) if(ndc[id[i]]&&dis[b][c=id[i]]<eps) p[c]=p[b],ndc[c]=0;
c=0;rep(i,3,n) if(ndc[id[i]]) { c=i;break; }
if(!c) { rep(i,1,n) p[i].print();return 1; }
swap(id[3],id[c]),c=id[3],ndc[c]=0;
getcirint(p[a],dis[a][c],p[b],dis[b][c],p[c],p2);
rep(i,4,n) if(ndc[c=id[i]])
{
rep(j,1,i-1) if(dis[id[j]][c]<eps) { p[c]=p[id[j]],ndc[c]=0;break; }
if(!ndc[c]) continue;
getcirint(p[a],dis[a][c],p[b],dis[b][c],p[c],p2);
if(ok(i)) continue;else p[c]=p2;
}
if(!check_ok(n)) return 0;
rep(i,1,n) p[i].print();return 1;
}
int main()
{
srand((unsigned int)time(0));
int n=inn();
rep(i,1,n) rep(j,1,n) dis[i][j]=indb();
if(n==1) return !printf("0.000000 0.000000\n");
if(n==2) return !printf("0.000000 0.000000\n0.000000 %lf\n",double(dis[1][2]));
while(!solve(n));return 0;
}