题目(2021年华东师范研究生入学数学分析考试):
求
limn→+∞n(n+1)(n+2)⋯(2n−1)nn\lim\limits_{n\to+\infty}\frac{\sqrt[n]{n(n+1)(n+2)\cdots(2n-1)}}{n}n→+∞limnnn(n+1)(n+2)⋯(2n−1)
参考答案:
limn→+∞n(n+1)(n+2)⋯(2n−1)nn=n(n+1)(n+2)⋯(2n−1)nnn=(1+1n)⋅(1+2n)⋯(1+n−1n)n=eln(1+1n)+ln(1+2n)+⋯+ln(1+n−1n)n=e∫12ln(x) dx=eln4−1=4e\begin{aligned}
\lim\limits_{n\to+\infty}\frac{\sqrt[n]{n(n+1)(n+2)\cdots(2n-1)}}{n}&=\sqrt[n]{\frac{n(n+1)(n+2)\cdots(2n-1)}{n^n}}\\
&=\sqrt[n]{(1+\frac{1}{n})\cdot(1+\frac{2}{n})\cdots(1+\frac{n-1}{n})}\\
&=e^{\frac{\ln(1+\frac{1}{n})+\ln(1+\frac{2}{n})+\cdots+\ln(1+\frac{n-1}{n})}{n}}\\
&=e^{\int_1^2\ln(x)\,\mathrm{d}x}\\
&=e^{\ln4-1}\\
&=\frac{4}{e}
\end{aligned}n→+∞limnnn(n+1)(n+2)⋯(2n−1)=nnnn(n+1)(n+2)⋯(2n−1)=n(1+n1)⋅(1+n2)⋯(1+nn−1)=enln(1+n1)+ln(1+n2)+⋯+ln(1+nn−1)=e∫12ln(x)dx=eln4−1=e4
2020年12月31日14:55:36